928 resultados para Benthic fauna
Resumo:
This paper describes and illustrates early to middle Eocene benthic foraminifers from northwest Atlantic Site 605, on the continental rise off New Jersey. Benthic foraminiferal faunas are dominated by Bulitnina spp., Nuttallides truempyi, Lenticulina spp., and Cibicidoides spp. Other common taxa include Oridorsalis spp., Gyroidinoides spp., uniserial taxa, arenaceous taxa, and Globocassidulina subglobosa. Together, these taxa usually make up 70% or more of the total fauna. The assemblages are interpreted as indicating a lower bathyal environment of deposition during the Eocene at Site 605. This is corroborated by an independent water depth estimate through backstripping, indicating a water depth for the beginning of the Eocene to late middle Eocene of approximately 2300 to 2000 m.
Resumo:
Dependence of the faunal composition and species structure of the White Sea littoral Harpacticoida on sediment properties was studied. Three groups of species could be distinguished according to their relationship with sediment properties: (1) species typical of silty sediments, (2) species preferring sediments with high gravel content, and (3) species inhabiting well-sorted washed sands. Vertical distribution of crustaceans within sediments of different types was studied. Vertical migrations of harpacticoids (3) during the tidal cycle were described. Data on interannual variability of harpacticoid fauna are presented.
Resumo:
Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.
Resumo:
Site 672 is located on the Atlantic abyssal plain to the east of the Lesser Antilles forearc region. It serves as a stratigraphic reference section for sediments entering the Barbados accretionary prism. A relatively complete Pliocene through lower Pleistocene section was recovered from Site 672 that contains a moderately well-preserved population of benthic foraminifers. Q-mode factor analysis of the benthic population data identified three Pliocene-Pleistocene assemblages that inhabited this site. The Factor 1 fauna, characterized by Nuttallides umboniferus, is commonly associated with the presence of Antarctic Bottom Water (AABW). The Factor 2 assemblage is characterized by Globocassidulina subglobosa, Epistominella exigua, and a combined category of unilocular species. The Factor 3 assemblage is characterized by Epistominella exigua, and Planulina wuellerstorfi. The Factor 2 and 3 faunas are associated with bottom water significantly warmer than that preferred by the Factor 1 assemblage. The distribution of these assemblages has been used to distinguish three climatic intervals in the abyssal environment during the Pliocene-Pleistocene. An early Pliocene warm interval occurred from the Ceratolithus rugosus Subzone to the middle of the Discoaster tamalis Subzone. The upper Pliocene is characterized by oscillations between the Factor 1 and Factor 2 assemblages, which suggests climatic deterioration and increased pulses of AABW flow. The persistence of an essentially modern (Factor 1) fauna throughout the early Pleistocene suggests full glacial development at both poles and a substantial volume of AABW production.
Resumo:
Planktonic foraminiferal diversity, equitability and biostratigraphic analysis of samples from Ocean Drilling Program (ODP) Leg 122, Hole 762C show that in general, cool water conditions prevailed during the latest Campanian-Maastrichtian in the eastern Indian Ocean. This is indicated by planktonic foraminiferal assemblages characterized by low species diversity and equitability with abundant rugoglobigerinids and heterohelicids. Archaeoglobigerinids, globigerinelloids, hedbergellids, and long-ranging double-keeled globotruncanids are also present in varying abundance but single-keeled forms occur rarely and sporadically. Identification of the stage and zonal boundaries for the studied geologic interval have been achieved through biostratigraphic analyses of closely spaced samples. Three planktonic foraminiferal biozones were identified, namely; in stratigraphic order, the Heterohelix rajagopalani, Contusotruncana contusa and Abathomphalus mayaroensis Zones. In Hole 762C, a Transitional Realm with Austral influences is defined for the latest Campanian to Maastrichtian, as shown by the high relative abundance of fauna characteristic of Transitional and Austral Realms. Austral endemic species such as Archaeoglobigerina australis Huber and Hedbergella sliteri Huber were found in the samples studied but Globigerinelloides impensus Sliter andA rchaeoglobigerina mateola Huber are conspicuously absent. From the latest Campanian to middle Maastrichtian, cooler parts of the Transitional Realm prevailed. A slight warming trend is assumed towards the end of the middle Maastrichtian because the faunas contain more species indicative of warm water conditions. The late Maastrichtian also appears to have been warmer than the latest Campanian-middle Maastrichtian. This conclusion is based on the high diversity and equitability values and recognition of some thermophilic taxa. A Tethyan influence is inferred for the latest Maastrichtian on the basis of an increase of planktonic foraminiferal species diversity and occurrences of several keeled taxa.
Resumo:
We examine the quantitative composition of benthic foraminiferal assemblages of Rose Bengal-stained surface samples from 37 stations in the Laptev Sea, and combine this data set with an existing data set along a transect from Spitsbergen to the central Arctic Ocean. Foraminiferal test accumulation rates, diversity, faunal composition and statistically defined foraminiferal associations are analysed for living (Rose Bengal-stained) and dead foraminifers. We compare the results of several benthic foraminiferal diversity indices and statistically defined foraminiferal associations, including Fisher's alpha and Shannon-Wiener diversity indices, Q-mode principal component analysis and correspondence analysis. Diversity and faunal density (standing stock) of living benthic foraminifers are positively correlated to trophic resources. In contrast, the accumulation rate of dead foraminifers (BFAR) shows fluctuating values depending on test disintegration processes. Foraminiferal associations defined by Q-mode principal component analysis and correspondence analysis are comparable. The factor values of the correspondence analysis allow a quantitative correlation between the foraminiferal fauna and the local carbon flux, which may be used as a tool to estimate changes in primary productivity.
Resumo:
A high-resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multi-proxy analyses of core MD99-2286 combined with palaeo-water depth modelling for the area. The late Younger Dryas was characterized by a cold ice-distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom-water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south-central Sweden, which develops a strong stratification of the water column at MD99-2286. A short-term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice-dammed lake in southern Norway, the Glomma event. After the last drainage route across south-central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with stable inflow of waters from the North Atlantic through the Norwegian Channel and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short-term cooling around 8300-8200 cal. a BP, representing the 8.2 ka event.
Resumo:
Benthic foraminifers have been studied in about 900 samples from Sites 642, 643, and 644 (ODP Leg 104, Voring Plateau), ranging in age from Eocene to Holocene. This sequence has been subdivided into seven assemblage zones. The Eocene to middle Miocene deposits are characterized by an agglutinated fauna. This reflects an environment causing dissolution of calcareous tests rather than the original living fauna. The upper Miocene to middle Pliocene deposits contain a diverse benthic foraminiferal fauna dominated by calcareous forms. The uppermost part of the sediment record, deposited during late Pliocene to Holocene, is characterized by many barren intervals and samples containing shallow-water species as well as ice-rafted material indicating glacial periods. Interglacials are reflected in samples containing a true oceanic foraminifer assemblage and no coarse clastic material.
Resumo:
Benthic foraminifers were studied in upper Eocene to Recent core-catcher samples from DSDP Sites 573, 574, and 575. The sites are on a north-south transect from the equator to about 05°N at about 133°W, water depth 4300 to 4600 m. At Site 574 additional samples were used to study the Eocene/Oligocene boundary in detail. About 200 specimens were counted per sample. The fauna is highly diverse (about 50 to 70 species per sample) and is of low dominance. The diversity is not related to age or sub-bottom depth. Many species are cosmopolitan and probably have wide environmental tolerances. Fluctuations in frequency of some taxa (e.g., Nuttallides umbonifera, Epistominella exigua, and Uvigerina spp.) cannot be correlated from one site to another. Several common species (e.g. Oridorsalis umbonatus and Globocassidulina subglobosa) range from late Eocene to Recent. First and last appearances are generally difficult to define precisely because many species are rare. For some species these datums differ from one site to another, but several datum levels are within 1 m.y. at all sites. First and last appearances are most numerous in two intervals, the late Eocene to early Oligocene (about 32 to 37 Ma) and the early to middle Miocene (about 13 to 18.5 Ma). Isotopic events occur within each of these periods of benthic faunal change, but the isotopic events have a shorter duration and start after the initiation of the changes in the fauna. Changes in deep-sea benthic faunal composition are not directly related to short-term oceanographic changes as expressed in isotopic records.
Resumo:
Living (Rose Bengal stained) benthic foraminifera were collected with a multicorer from six stations between 2°N and 12°S off West Africa. The foraminiferal communities in the investigated area reflect the direct influence of different productivity regimes, and are characterized by spatially and seasonally varying upwelling activity. At five stations, foraminiferal abundance coincides well with the gradient of surface productivity. However, at one station off the Congo River, the influence of strong fresh water discharge is documented. Although this station lies directly in the center of an upwelling area, foraminiferal standing stocks are surprisingly low. It is suggested that the Congo discharge may induce a fractionation of the organic matter into small and light particles of low nutritional content, by contrast to the relatively fast-sinking aggregates found in the centers of high productivity areas. Quality and quantity of the organic matter seem to influence the distribution of microhabitats as well. The flux of organic carbon to the sea-floor controls the sequence of degradation of organic matter in sediment and the position of different redox fronts. The vertical foraminiferal stratification within sediment closely parallels the distribution of oxygen and nitrate in porewater, and reflects different nutritive strategies and adaptation to different types of organic matter. The epifauna and shallow infauna colonize oxygenated sediments where labile organic matter is available. The intermediate infauna (M. barleeanum) is linked to the zone of nitrate reduction in sediments where epifaunal and shallow infaunal species are not competitive anymore, and must feed on bacterial biomass or on metabolizable nutritious particles produced by bacterial degradation of more refractory organic matter. The deep infauna shows its maximum distribution in anoxic sediments, where no easily metabolizable organic matter is available.
Resumo:
Bibliography: p. 40-41.
Resumo:
The recent invasion of the European green crab (Carcinus maenas) populations in Placentia Bay, Newfoundland and Labrador (NL) raises great concern about potential impacts on local fisheries and native biodiversity. Green crab are highly adaptable and in both native and invaded areas, green crab are well established predators that can outcompete other similarly sized decapods. The main objectives of this thesis were to: 1) identify the native species that green crab compete with for resources; 2) determine the depths and substrate types in which these interactions likely occur; 3) assess the indirect effects of green crab on native crustaceans and their changes in behavior; 4) assess the impacts of green crab on benthic community structure; 5) compare the NL population with other Atlantic Canadian populations in terms of competitive abilities; and 6) compare morphological features of the NL population with other Atlantic Canadian populations. I found that green crab overlap in space and diet with both rock crab (Cancer irroratus) and American lobster (Homarus americanus), potentially leading to a shift in habitat. Laboratory studies on naïve juvenile lobster also suggested shifts in behavior related to green crab, in that lobster decreased foraging activity and increased shelter use in the presence of green crab. Benthic community analyses showed fewer species in mud, sand, and eelgrass sites heavily populated by green crab compared to sites without green crab, although results depended on the taxa involved and I could not eliminate environmental differences through a short term caging study. Foraging ability of green crab varied in intraspecific competition experiments, with populations from NL and Prince Edward Island dominating longer-established populations from Nova Scotia and New Brunswick. Additional studies excluded claw size as a factor driving these results and behavioral differences likely reflected differences in invasion time and population genetics. Overall, green crab in Placentia Bay appear to be altering community structure of benthic invertebrates through predation and they also appear to indirectly impact native crustaceans through competition.
Resumo:
Study of Recent abyssal benthic foraminifera from core-top samples in the eastern equatorial Indian Ocean has identified distinctive faunas whose distribution patterns reflect the major hydrographic features of the region. Above 3800 m, Indian Deep Water (IDW) is characterized by a diverse and evenly-distributed biofacies to which Globocassidulina subglobosa, Pyrgo spp., Uvigerina peregrina, and Eggerella bradyi are the major contributors. Nuttalides umbonifera and Epistominella exigua are associated with Indian Bottom Water (IBW) below 3800 m. Within the IBW fauna, N. umbonifera and E. exigua are characteristic of two biofacies with independent distribution patterns. Nuttalides umbonifera systematically increases in abundance with increasing water depth. The E. exigua biofacies reaches its greatest abundance in sediments on the eastern flank of the Ninetyeast Ridge and in the Wharton-Cocos Basin. The hydrographic transition between IDW and IBW coincides with the level of transition from waters supersaturated to waters undersaturated with respect to calcite and with the depth of the lysocline. Carbonate saturation levels, possibly combined with the effects of selective dissolution on the benthic foraminiferal populations, best explain the change in faunas across the IDW/IBW boundary and the bathymetric distribution pattern of N. umbonifera. The distribution of the E. exigua fauna cannot be explained with this model. Epistominella exigua is associated with the colder, more oxygenated IBW of the Wharton-Cocos Basin. The distribution of this biofacies on the eastern flank of the Ninetyeast Ridge agrees well with the calculated bathymetric position of the northward flowing deep boundary current which aerates the eastern basins of the Indian Ocean.
Resumo:
A high-resolution study of benthic foraminiferal assemblages was performed on a ca. eight metre long sediment core from Gullmar Fjord on the west coast of Sweden. The results of 210Pb- and AMS 14C-datings show that the record includes the two warmest climatic episodes of the last 1500 years: the Medieval Warm Period (MWP) and the recent warming of the 20th century. Both periods are known to be anomalously warm and associated with positive NAO winter indices. Benthic foraminiferal successions of both periods are compared in order to find faunal similarities and common denominators corresponding to past climate changes. During the MWP, Adercotryma glomerata, Cassidulina laevigata and Nonionella iridea dominated the assemblages. Judging from dominance of species sensitive to hypoxia and the highest faunal diversity for the last ca. 2400 years, the foraminiferal record of the MWP suggests an absence of severe low oxygen events. At the same time, faunas and d13C values both point to high primary productivity and/or increased input of terrestrial organic carbon into the fjord system during the Medieval Warm Period. Comparison of the MWP and recent warming revealed different trends in the faunal record. The thin-shelled foraminifer N. iridea was characteristic of the MWP, but became absent during the second half of the 20th century. The recent Skagerrak-Kattegat fauna was rare or absent during the MWP but established in Gullmar Fjord at the end of the Little Ice Age or in the early 1900s. Also, there are striking differences in the faunal diversity and absolute abundances of foraminifera between both periods. Changes in primary productivity, higher precipitation resulting in intensified land runoff, different oxygen regimes or even changes in the fjord's trophic status are discussed as possible causes of these faunal differences.
Resumo:
The distribution of deep-sea benthonic foraminifera in core top samples from the southwest Indian Ocean is examined. Principal component analysis reveals two major assemblages. One assemblages between 3600 and 4800-m water depth is dominated by Episominella umbonifera and is associated with cold (Theta = -0.3 to 0.8°C), low salinity (34.66 to 34.72 * 10**-3) Antarctic Bottom Water in the Crozet Basin, in fracture zones, and on the flanks of the Southwest Indian Ridge. A second assemblage, dominated by Planulina wuellerstorfi, Globocassidulina subglobasa, Astrononion echolsi and Pullenia bulloides, is between 1600 and 3800 m on the Crozet Plateau, Madagascar Ridge, Central Indian Ridge, and Southwest Indian Ridge and is associated with relatively warm (Theta = 0.8 to 2.6°C), high salinity (34.72 to 34.76 * 10**-3) North Atlantic Deep Water. The third principal component divides the P. wuellerstorfi assemblage into two subgroups. One is dominated by Epistominella exigua, P. bulloides, P. wuellerstorfi, and A. echolsi and a second is dominated by G. subglobosa. The distribution of the E. umbonifera assemblage and previous hydrographic studies suggest that AABW flows as a western boundary contour current in the Crozet Basin and penetrates fracture zones in the Southwest Indian Ridge between 55 and 57°E and near 66°E as it travels northward into the Madagascar and Mascarene basins. The faunal-water mass associations from the southeast Indian Ocean are compared; the most notable faunal difference is the absence of Uvigerina as a dominant taxon in the southwest Indian Ocean. A comparison of dissolved oxygen and Uvigerina data shows that oxygen is not a major influence upon the distribution of Uvigerina. A correlation analysis of the faunal data and water depth, potential temperature, in situ temperature, salinity, dissolved oxygen, and 1 - Omega, an index of calcium carbonate undersaturation, was carried out to determine the relationships between fauna and hydrography. The second principal component has a significant positive correlation at the 99.9% level with temperature and negative correlations with water depth and 1 - Omega. A general faunal-water mass correlation exists, but it is not possible to determine which variable controls the faunal distributions.