999 resultados para 291599 Biomedical Engineering not elsewhere classified
Resumo:
Column-based refolding of complex and highly disulfide-bonded proteins simplifies protein renaturation at both preparative and process scale by integrating and automating a number of operations commonly used in dilution refolding. Bovine serum albumin (BSA) was used as a model protein for refolding and oxido-shuffling on an ion-exchange column to give a refolding yield of 55 % after 40 Ih incubation. Successful on-column refolding was conducted at protein concentrations of up to 10 mg/ml and refolded protein, purified from misfolded forms, was eluted directly from the column at a concentration of 3 mg/ml. This technique integrates the dithiothreitol removal, refolding, concentration and purification steps, achieving a high level of process simplification and automation, and a significant saving in reagent costs when scaled. Importantly, the current result suggests that it is possible to controllably refold disulfide-bonded proteins using common and inexpensive matrices, and that it is not always necessary to control protein-surface interactions using affinity tags and expensive chromatographic matrices. Moreover, it is possible to strictly control the oxidative refolding environment once denatured protein is bound to the ion-exchange column, thus allowing precisely controlled oxido-shuffling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we investigate the suitability of the grand canonical Monte Carlo in the description of adsorption equilibria of flexible n-alkane (butane, pentane and hexane) on graphitized thermal carbon black. Potential model of n-alkane of Martin and Siepmann (J. Phys. Chem. 102 (1998) 2569) is employed in the simulation, and we consider the flexibility of molecule in the simulation. By this we study two models, one is the fully flexible molecular model in which n-alkane is subject to bending and torsion, while the other is the rigid molecular model in which all carbon atoms reside on the same plane. It is found that (i) the adsorption isotherm results of these two models are close to each other, suggesting that n-alkane model behaves mostly as rigid molecules with respect to adsorption although the isotherm for longer chain n-hexane is better described by the flexible molecular model (ii) the isotherms agree very well with the experimental data at least up to two layers on the surface.
Resumo:
An investigation was carried out on the transition of an iron electrode from active to passive state in a sulphuric acid solution. It was found that the active-passive transition was an auto-catalytic process in which a pre-passive film grew on the electrode surface. The growing pre-passive film had a fractal edge whose dimension was affected by the applied passivating potential and the presence of chlorides in the solution. Applying a more positive passivating potential led to a faster active-passive transition and resulted in a more irregular pre-passive film. If chlorides were introduced into the sulphuric acid solution, the active-passive transition became more rapid and the pre-passive film more irregular. Apart from the influence on the growth of the pre-passive film, the presence of chlorides in the passivating solution was found to deteriorate the stability of the final passive film. All these phenomena can be understood if the passivating iron electrode is regarded as a dissipative system. To explain these results, a fractal pre-film model is proposed in this paper. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An optofluidic interferometer - in which a beam propagates across an interface between fluid and air - modulates at high extinction ratios and is only microns in size.
Resumo:
In this paper we investigate the difference between the adsorption of spherical molecule argon (at 87.3 K) and the flexible normal butane (at an equivalent temperature of 150 K) in carbon slit pores. These temperatures are equivalent in the sense that they have the same relative distances between their respective triple points and critical points. Higher equivalent temperatures are also studied (122.67 K for argon and 303 K for n-butane) to investigate the effects of temperature on the 2D-transition in adsorbed density. The Grand Canonical Monte Carlo simulation is used to study the adsorption of these two model adsorbates. Beside the longer computation times involved in the computation of n-butane adsorption, n-butane exhibits many interesting behaviors such as: (i) the onset of adsorption occurs sooner (in terms of relative pressure), (ii) the hysteresis for 2D- and 3D-transitions is larger, (iii) liquid-solid transition is not possible, (iv) 2D-transition occurs for n-butane at 150 K while it does not happen for argon except for pores that accommodate two layers of molecules, (v) the maximum pore density is about four times less than that of argon and (vi) the sieving pore width is slightly larger than that for argon. Finally another feature obtained from the Grand Canonical Monte Carlo (GCMC) simulation is the configurational arrangement of molecules in pores. For spherical argon, the arrangement is rather well structured, while for n-butane the arrangement depends very much on the pore size. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM-SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM-SC1. The corrosivity varied from coolant to coolant. Generally speaking. an oraganic-acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants. Toyota long, life coolant appeared to be the most promising one. In addition. it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder. brass. steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks.
Resumo:
In this work, the different adsorption properties of H and alkali metal atoms on the basal plane of graphite are studied and compared using a density functional method on the same model chemistry level. The results show that H prefers the on-top site while alkali metals favor the middle hollow site of graphite basal plane due to the unique electronic structures of H, alkali metals, and graphite. H has a higher electronegativity than carbon, preferring to form a covalent bond with C atoms, whereas alkaline metals have lower electronegativity, tending to adsorb on the highest electrostatic potential sites. During adsorption, there are more charges transferred from alkali metal to graphite than from H to graphite.
Resumo:
This work reports on a critical measurement to understand the intergranular stress corrosion cracking (IGSCC) of pipeline steels: the atom probe field ion microscope (APFIM) measurement of the carbon concentration at a grain boundary (GB). The APFIM measurement was related to the microstructure and to IGSCC observations. The APFIM indicated that the GB carbon concentration of X70 was similar to 10 at% or less, which correlated with a high resistance to IGSCC for X70. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The magnesium alloy AM-SC1 has been developed as a creep-resistant automotive engine block material. This paper outlines its corrosion performance under laboratory test conditions, considering corrosion on both the external and internal surfaces. This study found that AM-SC1 has a corrosion performance comparable to AZ91 when subjected to an aggressive salt-spray environment or in galvanic-coupling environments. This article further demonstrates that, with the appropriate selection of a commercially available engine coolant, the internal corrosion of AM-SC1 can be maintained at a tolerable level. In addition, internal corrosion resistance can be significantly improved by the addition of fluorides to the coolant solution. It is concluded that AM-SC1 can be successfully used in an engine environment provided that some simple corrosion-prevention strategies are adopted.
Resumo:
Results of the benchmark test are presented of comparing numerical schemes solving shock wave of M-s = 2.38 in nitrogen and argon interacting with a 43 degrees semi-apex angle cone and corresponding experiments. The benchmark test was announced in Shock Waves Vol. 12, No. 4, in which we tried to clarify the effects of viscosity and heat conductivity on shock reflection in conical flows. This paper summarizes results of ten numerical and two experimental applications. State of the art in studies regarding the shock/cone interaction is clarified.
Resumo:
Microstructure of MmNi(3.5)(CoAlMn)(1.5)/Mg (here Mm denotes La-rich mischmetal) multi-layer hydrogen storage thin films prepared by direct current magnetron sputtering was investigated by cross-sectional transmission electron microscopy (XTEM). It was shown that the MMM5 layers are composed of two regions: an amorphous region with a thickness of similar to 4nm at the bottom of the layers and a randomly orientated nanocrystallite region on the top of the amorphous region and the Mg layers consist of typical columnar crystallite with their [001] direction nearly parallel to the growth direction. The mechanism for the formation of the above microstructure characteristics in the multi-layer thin films has been proposed. Based on the microstructure feature of the multi-layer films, mechanism for the apparent improvement of hydrogen absorption/desorption kinetics was discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Zinc oxide single crystals implanted at room temperature with high-dose (1.4x10(17) cm(-2)) 300 keV As+ ions are annealed at 1000-1200 degrees C. Damage recovery is studied by a combination of Rutherford backscattering/channeling spectrometry (RBS/C), cross-sectional transmission electron microscopy (XTEM), and atomic force microscopy. Results show that such a thermal treatment leads to the decomposition and evaporation of the heavily damaged layer instead of apparent defect recovery and recrystallization that could be inferred from RBS/C and XTEM data alone. This study shows that heavily damaged ZnO has relatively poor thermal stability compared to as-grown ZnO which is a significant result and has implications for understanding results on thermal annealing of ion-implanted ZnO. (c) 2005 Americian Institute of Physics.
Resumo:
The formation of MgA1 layered double hydroxide (LDH) from physically mixed MgO and Al2O3 oxides upon hydrothermal treatment has been extensively investigated, and a formation mechanism has been proposed. We observed that the formation of LDH from the oxide mixture occurs upon heating at 110 degreesC. In general, LDH is the major component while the minor phases are mainly determined by the initial pH of the oxide suspension as well as the MgO/Al2O3 ratio. The neutrality in the initial suspension results in a minor Mg(OH)(2) as the impure phase, while the alkalinity in the suspension keeps some MgO unreacted throughout the whole hydrothermal treatment. We suggest that MgO and Al2O3 be hydrated into Mg(OH)(2) and Al(OH)(3), respectively, in the initial stage for all samples. We further Suggest that in the neutral condition Mg(OH)2 be quickly dissociated to Mg2+ and OH- which then deposit on the surface of Al(OH)(3)/Al2O3 to form a M-Al pre-LDH material. Al(OH)(4)(-), ionized from Al(OH)(3) in the basic solution, deposits on the surface of Mg(OH)(2)/MgO to result in a similar MgAl pre-LDH material. Such a pre-LDH material is then well crystallized upon continuous heating via the diffusion of metal ions in the solid lattice. Such a dissociation-deposition-diffusion mechanism via two pathways has been supported by the phase composition, morphological features of crystallites, and [Mg]/[Al] ratios on the crystallite surface. and presumably applied to the general formation of LDHs with various synthetic methods. Such as coprecipitation, homogeneous preparation, and reconstruction.
Resumo:
Understanding the interfacial interactions between the nanofiller and polymer matrix is important to improve the design and manufacture of polymer nanocomposites. This paper reports a molecular dynamic Study on the interfacial interactions and structure of a clay-based polyurethane intercalated nanocomposite. The results show that the intercalation of surfactant (i.e. dioctadecyldlmethyl ammonium) and polyurethane (PU) into the nanoconfined gallery of clay leads to the multilayer structure for both surfactant and PU, and the absence of phase separation for PU chains. Such structural characteristics are attributed to the result of competitive interactions among the surfactant, PU and the clay surface, including van der Waals, electrostatic and hydrogen bonding.
Resumo:
Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.