941 resultados para visuo-spatial memory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin converting enzyme inhibitors (ACEis) are widely used anti-hypertensive agents that are also reported to have positive effects on mood and cognition. The present study examined the influence of the ACEi, perindopril, on cognitive performance and anxiety measures in rats. Two groups of rats were treated orally for one week with the ACEi, perindopril, at doses of 0.1 and 1.0mg/kg/day. Learning was assessed by the reference memory task in the water maze, comparing treated to control rats. Over five training days both perindopril-treated groups learnt the location of the submerged platform in the water maze task significantly faster than control rats. A 60s probe trial on day 6 showed that the 1.0mg/kg/day group spent significantly longer time in the training quadrant than control rats. This improved performance in the swim maze task was not due to the effect of perindopril on motor activity or the anxiety levels of the rats as perindopril-treated and control animals behaved similarly in activity boxes and on the elevated+maze. These results confirm the anecdotal human studies that ACEis have a positive influence on cognition and provide possibilities for ACEis to be developed into therapies for memory loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The megachiropteran fruit bat Rousettus aegyptiacus is able to orient and navigate using both vision and echolocation. These two sensory systems have different environmental constraints however, echolocation being relatively short range when compared with vision. Despite this difference, an experiment testing their memory of a perch location demonstrates that once the location of a perch is learned R. aegyptiacus is not influenced by the movement of local landmark cues in the vicinity of the perch under either light or dark conditions. Thus despite the differing constraints of vision and echolocation, this suggests a place is remembered as a location in space and not by associations with landmarks in the vicinity. A decrease in initial performance when the task was repeated in the dark suggested the possibility that a memory of a location learned using vision does not generalize to echolocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with Williams syndrome (WS) display poor visuo-spatial cognition relative to verbal abilities. Furthermore, whilst perceptual abilities are delayed, visuo-spatial construction abilities are comparatively even weaker, and are characterised by a local bias. We investigated whether his differentiation in visuo-spatial abilities can be explained by a deficit in coding spatial location in WS. This can be measured by assessing participants' understanding of the spatial relations between objects within a visual scene. Coordinate and categorical spatial relations were investigated independently in four participant groups: 21 individuals with WS; 21 typically developing (TD) children matched for non-verbal ability; 20 typically developing controls of a lower non-verbal ability; and 21 adults. A third task measured understanding of visual colour relations. Results indicated first, that the comprehension of categorical and coordinate spatial relations is equally poor in WS. Second, that the comprehension of visual relations is also at an equivalent level to spatial relational understanding in this population. These results can explain the difference in performance on visuo-spatial perception and construction tasks in WS. In addition, both the WS and control groups displayed response biases in the spatial tasks. However, the direction of bias differed across the groups. This finding is explored in relation to current theories of spatial location coding. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Flavonoid-rich foods have been shown to be able to reverse age-related cognitive deficits in memory and learning in both animals and humans. However, to date, there have been only a limited number of studies investigating the effects of flavonoid-rich foods on cognition in young/healthy animals. Objectives: The aim of this study was to investigate the effects of a blueberry-rich diet in young animals using a spatial working memory paradigm, the delayed non-match task, using an eight-arm radial maze. Furthermore, the mechanisms underlying such behavioural effects were investigated. Results: We show that a 7-week supplementation with a blueberry diet (2 % w/w) improves the spatial memory performance of young rats (2 months old). Blueberry-fed animals also exhibited a faster rate of learning compared to those on the control diet. These behavioural outputs were accompanied by the activation of extracellular signal-related kinase (ERK1/2), increases in total cAMP-response element binding protein (CREB) and elevated levels of pro- and mature brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in hippocampal CREB correlated well with memory performance. Further regional analysis of BDNF gene expression in the hippocampus revealed a specific increase in BDNF mRNA in the dentate gyrus and CA1 areas of hippocampi of blueberry-fed animals. Conclusions: The present study suggests that consumption of flavonoid-rich blueberries has a positive impact on spatial learning performance in young healthy animals, and these improvements are linked to the activation of ERK–CREB– BDNF pathway in the hippocampus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in cognition and brain health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence from animal and adult human subjects has demonstrated potential benefits to cognition from flavonoid supplementation. This study aimed to investigate whether these cognitive benefits extended to a sample of school-aged children. Using a cross-over design, with a wash out of at least seven days between drinks, fourteen 8-10 year old children consumed either a flavonoid-rich blueberry drink or matched vehicle. Two hours after consumption, subjects completed a battery of five cognitive tests comprising the Go-NoGo, Stroop, Rey’s Auditory Verbal Learning Task, Object Location Task, and a Visual N-back. In comparison to vehicle, the blueberry drink produced significant improvements in the delayed recall of a previously learned list of words, showing for the first time a cognitive benefit for acute flavonoid intervention in children. However, performance on a measure of proactive interference indicated that the blueberry intervention led to a greater negative impact of previously memorised words on the encoding of a set of new words. There was no benefit of our blueberry intervention for measures of attention, response inhibition or visuo-spatial memory. While findings are mixed, the improvements in delayed recall found in this pilot study suggest that, following acute flavonoid-rich blueberry interventions, school aged children encode memory items more effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voluntary physical activity improves memory and learning ability in rodents, whereas status epilepticus has been associated with memory impairment. Physical activity and seizures have been associated with enhanced hippocampal expression of BDNF, indicating that this protein may have a dual role in epilepsy. The influence of voluntary physical activity on memory and BDNF expression has been poorly studied in experimental models of epilepsy. In this paper, we have investigated the effect of voluntary physical activity on memory and BDNF expression in mice with pilocarpine-incluced epilepsy. Male Swiss mice were assigned to four experimental groups: pilocarpine sedentary (PS), pilocarpine runners (PRs), saline sedentary (SS) and saline runners (SRs). Two days after pilocarpine-induced status epilepticus, the affected mice (PR) and their running controls (SR) were housed with access to a running wheel for 28 days. After that, the spatial memory and the expression of the precursor and mature forms of hippocampal BDNF were assessed. PR mice performed better than PS mice in the water maze test. In addition, PR mice had a higher amount of mature BDNF (14 kDa) relative to the total BDNF (14 kDa + 28 kDa + 32 kDa forms) content when compared with PS mice. These results show that voluntary physical activity improved the spatial memory and increased the hippocampal content of mature BDNF of mice with pilocarpine-induced status epilepticus. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (‘‘TH– Vglut2 Class1’’) also expressed the dopamine transporter (DAT) gene while one did not ("TH–Vglut2 Class2"), and the remaining population did not express TH at all ("TH-Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area