984 resultados para thermo-physics properties
Resumo:
The electrical and optical properties of the thermally induced quenched-in levels in p-silicon which have heen attributed to iron are studied. The two levels, HI and H2, are located at Ev + 0.42 eV and Ev + 0.52 eV, respectively, as determined by TSCAP, DLTS, and transient photocapacitance methods. The photoionization cross sections are well described by Lucovsky's model. The hole capture by H1 is temperature dependent; a barrier of 40 meV is measured. However, multiphonon emission mechanism cannot be invoked to explain this temperature dependence due to the inferred zero lattice relaxation. The source of iron contamination is found to be the ambient conditions, in particular the quartz tube. The conflicting reports regarding the stability and the variation in the reported capture cross section values suggests that the observed Ev + 0.4 eV level must be a complex centre. The inferred near zero lattice relaxation during the electron transition implies weak coupling to the host lattice.
Resumo:
The apparent thermal activation energy of 0.56 eV and the electron thermal capture cross section of 2.0 × 10-16 cm2 are measured for the gold related acceptor level in p+ nn+ silicon diodes by isothermal current transient and DLTS techniques. Using the emission and capture rate data and a degeneracy ratio of 2, the energy separation of the trap level from the conduction band is calculated and found to have the same temperature dependence as the band gap indicating that the acceptor level is pinned with respect to the valence band a t Ev + 0.637 eV.
Resumo:
We present spectroscopic ellipsometry measurements on thin films of polymer nanocomposites consisting of gold nanoparticles embedded in poly(styrene). The temperature dependence of thickness variation is used to estimate the glass transition temperature, T(g). In these thin films we find a significant dependence of T(g) on the nature of dispersion of the embedded nanoparticles. Our work thus highlights the crucial role played by the particle polymer interface morphology in determining the glass transition in particular and thermo-mechanical properties of such nanocomposite films.
Resumo:
We investigate the variation of the gas and the radiation pressure in accretion disks during the infall of matter to the black hole and its effect to the flow. While the flow far away from the black hole might be non-relativistic, in the vicinity of the black hole it is expected to be relativistic behaving more like radiation. Therefore, the ratio of gas pressure to total pressure (beta) and the underlying polytropic index (gamma) should not be constant throughout the flow. We obtain that accretion flows exhibit significant variation of beta and then gamma, which affects solutions described in the standard literature based on constant beta. Certain solutions for a particular set of initial parameters with a constant beta do not exist when the variation of beta is incorporated appropriately. We model the viscous sub-Keplerian accretion disk with a nonzero component of advection and pressure gradient around black holes by preserving the conservations of mass, momentum, energy, supplemented by the evolution of beta. By solving the set of five coupled differential equations, we obtain the thermo-hydrodynamical properties of the flow. We show that during infall, beta of the flow could vary up to similar to 300%, while gamma up to similar to 20%. This might have a significant impact to the disk solutions in explaining observed data, e.g. super-luminal jets from disks, luminosity, and then extracting fundamental properties from them. Hence any conclusion based on constant gamma and beta should be taken with caution and corrected. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se55Te25Ge20, Se55Te25Ge20 + 0.025% multi walled carbon nano tubes and Se55Te25Ge20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se55Te25Ge20) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC.
Resumo:
The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8% surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications. (C) 2015 Author(s).
Resumo:
Thawing of a frozen food product in a domestic microwave oven is numerically simulated using a coupled solver approach. The approach consists of a dedicated electromagnetic FDTD solver and a closely coupled UFVM multi-physics package. Two overlapping numerical meshes are defined; the food material and container were meshed for heat transfer and phase change solution, whilst the microwave oven cavity and waveguide were meshed for the microwave irradiation. The two solution domains were linked using a cross-mapping routine. This approach allowed the rotation of the food load to be captured. Power densities obtained on the structured FDTD mesh were interpolated onto the UFVM mesh for each timestep/turntable position. The UFVM solver utilised the power density data to advance the temperature and phase distribution solution. The temperature-dependant dielectric and thermo-physical properties of the food load were updated prior to revising the electromagnetic solution. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Two scenarios were investigated: a centric and eccentric placement on the turntable. Developing temperature fields predicted by the numerical solution are validated against experimentally obtained data. Presented results indicate the feasibility of fully coupled simulations of the microwave heating of a frozen product. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Optical limiting and thermo-optic properties of C60 in toluene are studied using 532 nm, 9 ns pulses from a frequency-doubled Nd:YAG laser. Optical limiting studies in these fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting properties in these molecules. Thermal lensing measurements are also performed in fullerene solutions. The quadratic dependence of thermal lens signal on incident energy confirms that enhanced optical absorption by the sample via excited triplet state absorption may play a leading role in the limiting property.
Resumo:
This paper reports the first derived thermo-optical properties for vacuum deposited infrared thin films embedded in multilayers. These properties were extracted from the temperature-dependence of manufactured narrow bandpass filters across the 4-17 µm mid-infrared wavelength region. Using a repository of spaceflight multi-cavity bandpass filters, the thermo-optical expansion coefficients of PbTe and ZnSe were determined across an elevated temperature range 20-160 ºC. Embedded ZnSe films showed thermo-optical properties similar to reported bulk values, whilst the embedded PbTe films of lower optical density, deviate from reference literature sources. Detailed knowledge of derived coefficients is essential to the multilayer design of temperature-invariant narrow bandpass filters for use in non-cooled infrared detection systems. We further present manufacture of the first reported temperature-invariant multi-cavity narrow bandpass filter utilizing PbS chalcogenide layer material.
Resumo:
The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work the quantitative theoretical treatment for two beam mode mismatched thermal lens spectrometry is applied to investigate the thermo-optical properties of chalcohalide (chalcolgenides and halides mixture) glasses. For the three kinds of glass studied the thermal diffusivity varied between 2.5 and 2.7 x 10(-3) cm(2) s(-1). Using these results and supposing Dulong-Petit specific heats we estimated the thermal conductivity and temperature ratio of optical path length (ds/dT) and temperature coefficient of refractive index (dn/dT). All samples had positive ds/dT(similar to 3.3 x 10(-6) K-1) and negative dn/dT (similar to -26 x 10(-6) K-1). The difference between these parameters and the change of signal are consequences of the expansion coefficient (13 x 10(-6) K-1) and refractive index (n similar to 2.6) of chalcohalides. (C) 1999 Elsevier B.V. B.V. All rights reserved.