Comparative degradation of ZnO- and SnO(2)-based polycrystalline non-ohmic devices by current pulse stress


Autoria(s): Ramirez, M. A.; Bassi, W.; Bueno, Paulo Roberto; Longo, Elson; Varela, José Arana
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

21/06/2008

Resumo

The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.

Formato

5

Identificador

http://dx.doi.org/10.1088/0022-3727/41/12/122002

Journal of Physics D-applied Physics. Bristol: Iop Publishing Ltd, v. 41, n. 12, p. 5, 2008.

0022-3727

http://hdl.handle.net/11449/9367

10.1088/0022-3727/41/12/122002

WOS:000256568000002

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Journal of Physics D: Applied Physics

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article