36 resultados para tetranucleotide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 45 microsatellite loci from yellow perch, Perca flavescens, were isolated and characterized. Among the 45 microsatellite loci, 32 had more than two alleles. A wild population of P. flavescens (n = 48) was used to examine the allele range of the microsatellite loci. Mendelian inheritance of alleles was confirmed by examining the amplified products in pair-mated families. The number of alleles for the 32 polymorphic loci varied from two to 16, and observed heterozygosity ranged between 0.024 (YP79) and 0.979 (YP60). Cross-species polymorphic amplification in four other Percidae species was successful for 22 loci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

• Premise of the study: Polymorphic microsatellite markers were developed in Vinca minor (Apocynaceae) to evaluate the level of clonality, population structure, and genetic diversity of the species within its native and introduced range. • Methods and Results: A total of 1371 microsatellites were found in 43,565 reads from 454 pyrosequencing of genomic V. minor DNA. Additional microsatellite loci were mined from publicly available cDNA sequences. After several rounds of screening, 18 primer pairs flanking di-, tri-, or tetranucleotide repeats were identified that revealed high levels of genetic diversity in two native Italian populations, with two to 11 alleles per locus. Clonal growth predominated in two populations from the introduced range in Germany. Five loci successfully cross-amplified in three additional Vinca species. • Conclusions: The novel polymorphic microsatellite markers are promising tools for studying clonality and population genetics of V. minor and for assessing the historical origin of Central European populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.661025 and 1.161026, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic diversity and population structure of Plasmodium viva-V parasites call predict the origin and Spread of novel Variants Within a population enabling Population specific malaria control measures. We analyzed the genetic diversity and population Structure of 425 P. vivax isolates from Sri Lanka, Myanmar, and Ethiopia using 12 trinucleotide and tetranucleotide microsatellite markers. All three parasite populations were highly polymorphic with 3-44 alleles per locus. Approximately 65% were multiple-clone infections. Mean genetic diversity (H(E)) was 0.7517 in Ethiopia, 0.8450 in Myanmar, and 0.8610 in Sri Lanka. Significant linkage disequilibrium Was maintained. Population structure showed two clusters (Asian and African) according to geography and ancestry Strong clustering of outbreak isolates from Sri Lanka and Ethiopia was observed. Predictive power of ancestry using two-thirds of the isolates as a model identified 78.2% of isolates accurately as being African or Asian. Microsatellite analysis is a useful tool for mapping short-term outbreaks of malaria and for predicting ancestry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The population structure of Plasmodium vivax remains elusive. The markers of choice for large-scale population genetic studies of eukaryotes, short tandem repeats known as microsatellites, have been recently reported to be less polymorphic in R vivax. Here we investigate the microsatellite diversity and geographic structure in P vivax, at both local and global levels, using 14 new markers consisting of tri- or tetranucleotide repeats. The local-level analysis, which involved 50 field isolates from Sri Lanka, revealed unexpectedly high diversity (average virtual heterozygosity [H-E], 0.807) and significant multilocus linkage disequilibrium in this region of low malaria endemicity. Multiple-clone infections occurred in 60% of isolates sampled in 2005. The global-level analysis of field isolates or monkey-adapted strains identified 150 unique haplotypes among 164 parasites from four continents. Individual P. vivax isolates could not be unambiguously assigned to geographic populations. For example, we found relatively low divergence among parasites from Central America, Africa, Southeast Asia and Oceania, but substantial differentiation between parasites from the same continent (South Asia and Southeast Asia) or even from the same country (Brazil). Parasite relapses, which may extend the duration of P. vivax carriage in humans, are suggested to facilitate the spread of strains across continents, breaking down any pre-existing geographic structure. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine is a key neurotransmitter of the mesolimbic reward pathway in the human brain, and tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. Consequently, the gene encoding TH is a strong candidate for involvement in the genetic component of addiction. The importance of this gene in nicotine dependence is supported by many studies showing a link between nicotine administration and TH expression. A functional tetranucleotide repeat polymorphism within intron 1 of the TH gene (HUMTH01-VNTR) has been shown to modify tobacco use in two independent Caucasian samples from the USA and Australia. Using information drawn from an eight-wave Australian population-based longitudinal study of adolescent health, we tested the effect of the HUMTH01-VNTR on nicotine dependence. Comparisons were made between dependent smokers and non-dependent smokers. These data provide further support for a protective association between the K4 allele and dependent smoking (odds ratio 0.54, 95% confidence interval 0.28-1.0). No associations were observed at any of three other common TH polymorphisms (rs6356, rs6357 and HUMTH01-PstI). Including these data, three independent studies, two of which use identical phenotypes, have now identified a protective relationship between the K4 allele of the functional HUMTH01-VNTR polymorphism and high-level smoking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports pilot data on an association between tobacco dependence and a five-allele tetranucleotide repeat polymorphism in the first intron of the tyrosine hydroxylase (TH) gene. One hundred and twenty-six Australian adolescents who had participated in the Health in Transition Study (1993–1997), and who showed patterns of either dependent or nondependent smoking across four waves of data collection, consented to participation in the pilot study. The smoking status of those recruited was confirmed using a telephone-administered drug use questionnaire during 2000. Tobacco dependence was defined as smoking more than 6 days per week and more than 10 cigarettes per day during wave 5 (year 2000) and at lfeast one prior wave (n = 58). A second, more stringent phenotype included smoking within an hour of waking (n = 37). The control group comprised adolescents who had used tobacco but had remained low-level social smokers across each wave of data (n = 56). DNA was collected using a mouthwash procedure. Using the more strictly defined tobacco dependence phenotype, and after adjusting for sex, a significant protective association was found between the K4 allele and tobacco dependence (OR 0.27, 95% confidence interval [CI] 0.09, 0.82). No association was found using the liberal criteria of tobacco dependence (OR 0.51, 95% confidence interval [CI] 0.23, 1.2). These preliminary results replicate a previous association between tobacco use and the K4 allele of the TH gene (Lerman et al., 1997). The potential significance of including time to first cigarette in definitions of tobacco dependence and the possible role that these TH variants might play in tobacco dependence are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Broadbill Swordfish is harvested by fisheries throughout the world. In order to devise more effective management strategies, we need a clear understanding of the population structure of the species. From a library of 29 tetranucleotide repeats, 22 microsatellite markers were characterised for 94 swordfish samples captured from eastern and western Australia. The number of alleles ranged from 2 to 26 and observed heterozygosity from 0.066 to 0.923. We have identified 18 microsatellites that will be valuable in the examination of swordfish population structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new-generation 454 GS-FLX Titanium pyrosequencing was used to isolate microsatellite markers for the Brazilian Guanabara frog, Euparkerella brasiliensis, an Atlantic forest endemic species. Three multiplex polymerase chain reaction sets were optimized for genotyping of 11 polymorphic (di- and tetranucleotide) microsatellite markers. Genetic diversity was assessed in 21 individuals from a population (Reserva Ecológica de Guapiaçu, REGUA) locatedin the central region of the Rio de Janeiro State, in Brazil. The mean number of alleles per locus ranged from 3 to 12. Observed and expected heterozygosities ranged from 0.095 to 0.905 and from 0.094 to 0.904, respectively. After using the Bonferroni correction for multiple tests, there was no evidence of linkage disequilibrium between pairs of loci but deviations for Hardy-Weinberg equilibrium were found in 4 loci. We found no evidence for allele dropouts or stuttering, but we detected the presence of null alleles at loci Eb10 and Eb36. These markers will be useful for analyses of fine-scale population structure and determination of relative effects of habitat loss and fragmentation on population genetic variability within species. © FUNPEC-RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The leaf-cutter ant Atta laevigata (Formicidae: Attini) is an agricultural pest largely distributed in the Neotropics and a model organism for studies of evolution, speciation and population genetics. Microsatellites are a very powerful tool for these kind of studies, but such markers are not available for studies on A. laevigata. In the present report, we describe the isolation and characterization of nine microsatellite loci in A. laevigata and the testing of these markers across other species of leaf-cutter ants. Findings. Nine microsatellite loci, consisting of six dinucloeotide, one trinucleotide, one tetranucleotide, and one di/trinucleotide repeat motifs, were isolated and characterized. Primers and protocols were successfully designed to selectively amplify these markers. To test effectiveness of these markers for detailed population genetic studies, we genotyped female workers collected from 36 monogynic nests of A. laevigata and found that eight loci were within Hardy-Weinberg expectations, while the remaining locus had a deficiency of heterozygotes. Micro-Checker analysis of individuals from 55 monogynic nests indicated that loci Alae11, Alae24, Alae18 showed signs of null alleles. For the remaining six loci, the number of alleles per locus ranged between 2 and 11, with expected heterozygosity ranging between 0.07 and 0.88. All of these loci cross-amplified in other species of Atta. Conclusions: These six polymorphic microsatellite loci should prove useful for future genetic investigations of the pest species Atta laevigata, as well as studies of other species of leaf-cutter ants in the genus Atta. © 2013 Kakazu et al.; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic analysis of limiting quantities of genomic DNA play an important role in DNA forensics, paleoarcheology, genetic disease diagnosis, genetic linkage analysis, and genetic diversity studies. We have tested the ability of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to amplify picogram quantities of human genomic DNA for the purpose of increasing the amount of template for genotyping with microsatellite repeat markers. DNA was uniformly amplified at a large number of typable loci throughout the human genome with starting template DNAs from as little as 15 pg to as much as 400 ng. A much greater-fold enrichment was seen for the smaller genomic DOP-PCRs. All markers tested were amplified from starting genomic DNAs in the range of 0.6–40 ng with amplifications of 200- to 600-fold. The DOP-PCR-amplified genomic DNA was an excellent and reliable template for genotyping with microsatellites, which give distinct bands with no increase in stutter artifact on di-, tri-, and tetranucleotide repeats. There appears to be equal amplification of genomic DNA from 55 of 55 tested discrete microsatellites implying near complete coverage of the human genome. Thus, DOP-PCR appears to allow unbiased, hundreds-fold whole genome amplification of human genomic DNA for genotypic analysis.