926 resultados para solar air-conditioning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar cooling systems are gaining popularity due to continuously increasing of energy costs around the world. However, there are still some factors that are hindering the installation of solar cooling systems on a larger scale. One being the cost associated with the solar collectors required to provide heat to the absorption chiller. This study demonstrates the possibility of reducing the number of solar panels in a residential solar cooling system based on evacuated tubes producing hot water at a low temperature (90 °C) and a water-ammonia absorption chiller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper evaluates and compares the system performance of a solar desiccant-evaporative cooling (SDEC) system with a referenced conventional variable air volume (VAV) system for a typical office building in all 8 Australian capital cities. A simulation model of the building is developed using the whole building simulation software EnergyPlus. The performance indicators for the comparison are system coefficient of performance (COP), annual primary energy consumption, annual energy savings, and annual CO2 emissions reduction. The simulation results show that Darwin has the most apparent advantages for SDEC system applications with an annual energy savings of 557 GJ and CO2 emission reduction of 121 tonnes. The maximum system COP is 7. For other climate zones such as Canberra, Hobart and Melbourne, the SDEC system is not as energy efficient as the conventional VAV system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article is to report the experience of design and testing of orifice plate-based flow measuring systems for evaluation of air leakages in components of air conditioning systems. Two of the flow measuring stations were designed with a beta value of 0.405 and 0.418. The third was a dual path unit with orifice plates of beta value 0.613 and 0.525. The flow rates covered with all the four were from 4-94 l/s and the range of Reynolds numbers is from 5600 to 76,000. The coefficients of discharge were evaluated and compared with the Stolz equation. Measured C-d values are generally higher than those obtained from the equation, the deviations being larger in the low Reynolds number region. Further, it is observed that a second-degree polynomial is inadequate to relate the pressure drop and flow rate. The lower Reynolds number limits set by standards appear to be somewhat conservative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modifications made in a solar air collector inlet duct to achieve uniform velocity of air in the absorber duct are described. Measurements of temperature and pressure at various points in the duct gave information on the distribution of air in the absorber duct. A thermal performance test conducted on the collector with a vaned diffuser showed some significant improvement compared with a diffuser without vanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an multi weights neurons approach to determine the delay time for a Heating ventilating and air-conditioning (HVAC) plan to respond to control actions. The multi weights neurons is a fully connected four-layer network. An acceleration technique was used to improve the general delta rule for the learning process. Experimental data for heating and cooling modes were used with both the multi weights neurons and a traditional mathematical method to determine the delay time. The results show that multi weights neurons can be used effectively determining the delay time for HVAC systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De nos jours, l'utilisation accrue de combustibles à base de fossiles et l'électricité met en péril l'environnement naturel à cause des niveaux élevés de pollution. Il est donc plausible de prévoir des économies d'énergie significatives grâce à la climatisation dite «naturelle»». En accord avec les objectifs acceptés à l'échelle internationale d'une architecture «verte» et durable, l'utilisation de cours intérieures associées aux capteurs de vent, aux murs-Trombe et à d'autres systèmes de climatisation naturelle (aussi bien traditionnels que nouveaux), paraît prometteuse. Ce mémoire propose une analyse de nouvelles approches à la climatisation naturelle et à la production d'air frais avec une consommation minimale d'énergie, eu égard aux traditions et aux tendances, en particulier dans les zones climatiques chaudes et sèches comme l'Iran. Dans ce contexte, regarder l'architecture de l'Islam et la discipline du Qur'an paraissent offrir un guide pour comprendre l'approche musulmane aux processus de décision en design. Nous regardons donc les traditions et les tendances en ce qui concerne la climatisation naturelle à travers l'élément le plus important du contexte islamique, à savoir le Qur'an. C'est pourquoi, à l'intérieur du thème de la tradition, nous avons pris en compte quelques considérations concernant l'influence de l'Islam, et en particulier le respect de la nature associé à un équilibre entre l'harmonie et l'individualité. Ce sont autant de facteurs qui influencent la prise de décisions visant à résoudre des problèmes scientifiques majeurs selon la philosophie et les méthodes islamiques ; ils nous permettent de faire quelques recommandations. La description des principes sous-jacents aux capteurs à vent et des antécédents trouvés dans la nature tels que les colonies de termites, est présentée également. Sous la rubrique tendances, nous avons introduit l'utilisation de matériaux et de principes de design nouveaux. Regarder simultanément ces matériaux nouveaux et l'analogie des colonies de termites suggère de bonnes approches à la conception d'abris pour les victimes de tremblements de terre dans les régions sisimques. Bam, une ville iranienne, peut être considérée comme un exemple spécifique illustrant où les principes exposés dans ce mémoire peuvent s'appliquer le plus adéquatement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data centre is a centralized repository,either physical or virtual,for the storage,management and dissemination of data and information organized around a particular body and nerve centre of the present IT revolution.Data centre are expected to serve uniinterruptedly round the year enabling them to perform their functions,it consumes enormous energy in the present scenario.Tremendous growth in the demand from IT Industry made it customary to develop newer technologies for the better operation of data centre.Energy conservation activities in data centre mainly concentrate on the air conditioning system since it is the major mechanical sub-system which consumes considerable share of the total power consumption of the data centre.The data centre energy matrix is best represented by power utilization efficiency(PUE),which is defined as the ratio of the total facility power to the IT equipment power.Its value will be greater than one and a large value of PUE indicates that the sub-systems draw more power from the facility and the performance of the data will be poor from the stand point of energy conservation. PUE values of 1.4 to 1.6 are acievable by proper design and management techniques.Optimizing the air conditioning systems brings enormous opportunity in bringing down the PUE value.The air conditioning system can be optimized by two approaches namely,thermal management and air flow management.thermal management systems are now introduced by some companies but they are highly sophisticated and costly and do not catch much attention in the thumb rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air heaters were subjected to different air mass flow rates in order to standardize the flow per unit area of the collector. Much attention was given to investigate the performance of the solar air heaters fitted with baffles. The output obtained from the experiments on pilot models, helped the installation of solar air heating system for industrial drying applications also. Apart from these, various types of solar dryers, for small and medium scale drying applications, were also built up. The feasibility of ‘latent heat thermal energy storage system’ based on Phase Change Material was also undertaken. The application of solar greenhouse for drying industrial effluent was analyzed in the present study and a solar greenhouse was developed. The effectiveness of Computational Fluid Dynamics (CFD) in the field of solar air heaters was also analyzed. The thesis is divided into eight chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – To evaluate the control strategy for a hybrid natural ventilation wind catchers and air-conditioning system and to assess the contribution of wind catchers to indoor air environments and energy savings if any. Design/methodology/approach – Most of the modeling techniques for assessing wind catchers performance are theoretical. Post-occupancy evaluation studies of buildings will provide an insight into the operation of these building components and help to inform facilities managers. A case study for POE was presented in this paper. Findings – The monitoring of the summer and winter month operations showed that the indoor air quality parameters were kept within the design target range. The design control strategy failed to record data regarding the operation, opening time and position of wind catchers system. Though the implemented control strategy was working effectively in monitoring the operation of mechanical ventilation systems, i.e. AHU, did not integrate the wind catchers with the mechanical ventilation system. Research limitations/implications – Owing to short-falls in the control strategy implemented in this project, it was found difficult to quantify and verify the contribution of the wind catchers to the internal conditions and, hence, energy savings. Practical implications – Controlling the operation of the wind catchers via the AHU will lead to isolation of the wind catchers in the event of malfunctioning of the AHU. Wind catchers will contribute to the ventilation of space, particularly in the summer months. Originality/value – This paper demonstrates the value of POE as indispensable tool for FM professionals. It further provides insight into the application of natural ventilation systems in building for healthier indoor environments at lower energy cost. The design of the control strategy for natural ventilation and air-conditioning should be considered at the design stage involving the FM personnel.