977 resultados para self-organized InAs quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the self-organized InAs quantum dots capped with thin and In0.2Al0.8As and In0.2Ga0.8As combination layers with a large ground and first excited energy separation emission at 1.35 mum at room temperature. Deep level transient spectroscopy is used to obtain quantitative information on emission activation energies and capture barriers for electrons and holes. For this system, the emission activation energies are larger than those for InAs/GaAs quantum dots. With the properties of wide energy separation and deep emission activation energies, self-organized InAs quantum dots capped with In0.2Al0.8As and In0.2Ga0.8As combination layers are one of the promising epitaxial structures of 1.3 mum quantum dot devices. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review is presented on recent research development of self-organized Ge/Si quantum dots (QDs). Emphasis is put on the morphological evolution of the Ge quantum dots grown on Si (001) substrate, the structure analysis of multilayer Ge QDs, the optical and electronic properties of these nanostructures, and the approaches to fabricating ordered Ge quantum dots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the exciton states in vertically stacked self-assembled quantum disks within the effective mass approximation. The energy spectrum of the electron and hole is calculated using the transfer matrix formalism in the adiabatic approximation. The Coulomb interaction between the electron and the hole is treated accurately by the direct diagonalization of the Hamiltonian matrix. The effect of the vertical alignment of the disks on the ground energy of heavy- and light-hole exciton is presented and discussed. The binding energy is discussed in terms of the probability of the ground wave function. The ground energy of heavy- and light-hole excitons as a function of the magnetic field is presented and the effect of the disk size (the radius of disks) on the exciton energy is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly uniform InAs quantum wires (QWRs) have been obtained on the In0.5Al0.5As buffer layer grown on the InP substrate 8 degrees off (001) towards (111) by molecular-beam epitaxy. The quasi-periodic composition modulation was spontaneously formed in the In0.5Al0.5As buffer layer on this misoriented InP (001). The width and period of the In-rich bands are about 10 and 40 nm, respectively. The periodic In-rich bands play a major role in the sequent InAs QWRs growth and the InAs QWRs are well positioned atop In-rich bands. The photoluminescence (PL) measurements showed a significant reduction in full width at half maximum and enhanced PL efficiency for InAs QWRs on misoriented InP(001) as compared to that on normal InP(001). (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we have investigated the temperature dependence of photoluminescence (PL) from self-assembled InAs quantum dots (QDs) covered by an InAlAs/InGaAs combination layer. The ground state experiences an abnormal variation of PL linewidth from 15 K up to room temperature. Meanwhile, the PL integrated intensity ratio of the first excited state to the ground state for InAs QDs unexpectedly decreases with increasing temperature, which we attribute to the phonon bottleneck effect. We believe that these experimental results are closely related to the partially coupled quantum dots system and the large energy separation between the ground and the first excited states. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) in InAlAs grown on (001) and (311)B InP substrates by molecular beam epitaxy (MBE) have been comparatively investigated. A correlated study of atomic force microscopy (AFM) and photoluminescence (PL) disclosed that InAs QDs grown on high-index InP substrates can lead to high density and uniformity. By introducing a lattice-matched InAlGaAs overlayer on InAlAs buffer, still more dense and uniform InAs QDs were obtained in comparison with InAs QDs formed with only InAlAs matrix. Moreover, two-dimensional well-ordered InAs dots with regular shape grown on (311)B InP substrates are reported for the first time. We explained this exceptional phenomenon from strain energy combined with kinetics point of view. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the structural and optical characteristics of InAs quantum dots (QDs) grown on GaAs (311)A substrates. Atomic force microscopic result shows that QDs on (311)A surface exhibit a nonconventional, faceted, arrowhead-like shapes aligned in the [233] direction. The photoluminescence (PL) intensity, peak position and the full width at half maxinum (FWHM) are all closely related to the measurement temperature. The fast redshift of PL energy and monotonous decrease of linewidth with increasing temperature were observed and explained by carriers being thermally activated to the barrier produced by the wetting layer and then being retrapped and recombined in energetically lower-lying QDs states. This model explains our results well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude. In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance. The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature photoluminescence studies have been performed on Si-doped and Be-doped self-organized InAs/GaAs quantum dot (QD) samples to investigate the effect of doping. When Si or Be is doped into the sample, a remarkable decrease in line-width is observed. We relate this phenomenon to a model that takes the Si or Be atoms as the nucleation centers for the formation of QDs. When Si or Be is doped, more small uniform quantum dots are formed. The result will be of significance for the application of self-organized InAs quantum dots in semiconductor devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) in an InAlGaAs matrix, lattice-matched to InP substrate, have been grown by molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL) are used to study their structural and optical properties. In InAs/InAlGaAs/ InP system, we propose that when the thickness of InAs layer deposited is small, the random strain distribution of the matrix layer results in the formation of tadpole-shaped QDs with tails towards random directions, while the QDs begin to turn into dome-shaped and then coalesce to form islands with larger size and lower density to release the increasing misfit strain with the continuous deposition of InAs. XRD rocking curves showing the reduced strain with increasing thickness of InAs layer may also support our notion. The results of PL measurements are in well agreement with that of TEM images. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extremely low density self-assembled InAs quantum dots are grown by a combination technique of in situ annealing for 2 min and pause of substrate rotation during molecular beam epitaxy. The surface morphology and structural characteristics of the quantum dots are scrutinized by atomic force microscopy and photoluminescence spectra. It is found that the quantum dot size and density increase as the InAs deposition amount rises. Quantum dots with a density between 2.5 x 10(7) cm(-2) and 2.2 x 10(8) cm(-2) are 2-5 nm in height and 18-39 nm in diameter. It is believed that as-grown InAs nanodots may be of important value for future single quantum dot research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL). It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) have been fabricated by depositing 1.6, 1.8, 2.0 and 2.5 monolayer (ML) InAs on surfaces of the undoped-n(+) (UN+) type GaAs structure. Room temperature contactless electroreflectance (CER) was employed to study the built-in electric field and the surface Fermi level pinning of these QD-covered UN+ GaAs samples. The CER results show that 1.6 ML InAs QDs on GaAs do not modify the Fermi level, whereas for samples with more than 1.6 ML InAs coverage, the surface Fermi level is moved to the valence band maximum of GaAs by about 70 meV (which is independent of the InAs deposition thickness) compared to bare GaAs. It is concluded that the modification of InAs coverage on the Fermi level on the GaAs surface is due to the QDs, rather than to the wetting layer. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots are fabricated on a GaAs substrate by molecular beam epitaxy. The dots are covered by several monolayers of In0.2Ga0.8As before a GaAs cap layer and an in situ postgrowth annealing is performed to tune the emission to higher energy. The temperature dependence of photoluminescence from this structure demonstrates a slower redshift rate of the peak position, a gradual broadening of the linewidth and an abnormal enhancement of integrated intensity as the temperature is increased from 15 to 300 K. These phenomena are closely related to the introduction of an InGaAs layer and to the intermixing of In and Ga atoms during annealing. We propose a model to explain the unusual increase in PL intensity, which fits the experimental data well. (C) 2000 American Institute of Physics. [S0021-8979(00)04618-1].