875 resultados para process conditions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypropylene sheets have been stretched at 160 °C to a state of large biaxial strain of extension ratio 3, and the stresses then allowed to relax at constant strain. The state of strain is reached via a path consisting of two sequential planar extensions, the second perpendicular to the first, under plane stress conditions with zero stress acting normal to the sheet. This strain path is highly relevant to solid phase deformation processes such as stretch blow moulding and thermoforming, and also reveals fundamental aspects of the flow rule required in the constitutive behaviour of the material. The rate of decay of stress is rapid, and such as to be highly significant in the modelling of processes that include stages of constant strain. A constitutive equation is developed that includes Eyring processes to model both the stress relaxation and strain rate dependence of the stress. The axial and transverse stresses observed during loading show that the use of a conventional Levy-Mises flow rule is ineffective, and instead a flow rule is used that takes account of the anisotropic state of the material via a power law function of the principal extension ratios. Finally the constitutive model is demonstrated to give quantitatively useful representation of the stresses both in loading and in stress relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the possibility of combining moderate vacuum frying followed by post-frying high vacuum application during the oil drainage stage, with the aim to reduce oil content in potato chips. Potato slices were initially vacuum fried under two operating conditions (140 °C, 20 kPa and 162 °C, 50.67 kPa) until the moisture content reached 10 and 15 % (wet basis), prior to holding the samples in the head space under high vacuum level (1.33 kPa). This two-stage process was found to lower significantly the amount of oil taken up by potato chips by an amount as high as 48 %, compared to drainage at the same pressure as the frying pressure. Reducing the pressure value to 1.33 kPa reduced the water saturation temperature (11 °C), causing the product to continuously lose moisture during the course of drainage. Continuous release of water vapour prevented the occluded surface oil from penetrating into the product structure and released it from the surface of the product. When frying and drainage occurred at the same pressure, the temperature of the product fell below the water saturation temperature soon after it was lifted out of the oil, which resulted in the oil getting sucked into the product. Thus, lowering the pressure after frying to a value well below the frying pressure is a promising method to lower oil uptake by the product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to many scientists third industrial revolution has already began and this primarily means the transition to renewable energy sources. Energy requirements are increasing rapidly due to fast industrialization and the increased number of vehicles on the roads. Massive consumption of fossil fuels leads to environmental pollution, therefore, biofuels are offered as an alternative. For example, the application of biodiesel in diesel engines instead of diesel results in the proven reduction of harmful exhaust emissions. One of the most important technologies, which has been already explored at the commercial level, is the production of a liquid biofuel applicable in compression-ignition engines (or diesel engines), from biomass rich in fats and oils. This biofuel is generically referred as biodiesel, and consists essentially of a mixture of FAME's (fatty acid methyl esters). This current work describes modern approaches of biodiesel production from vegetable oil and subsequent analysis of produced biodiesel main characteristics such as density, acidity, iodine value and FAME content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3–7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1–1.5 with respective energy yields of 60–100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2016

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work, a numerical study is performed to predict the effect of process parameters on transport phenomena during solidification of aluminium alloy A356 in the presence of electromagnetic stirring. A set of single-phase governing equations of mass, momentum, energy and species conservation is used to represent the solidification process and the associated fluid flow, heat and mass transfer. In the model, the electromagnetic forces are incorporated using an analytical solution of Maxwell equation in the momentum conservation equations and the slurry rheology during solidification is represented using an experimentally determined variable viscosity function. Finally, the set of governing equations is solved for various process conditions using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. In present work, the effect of stirring intensity and cooling rate are considered. It is found that increasing stirring intensity results in increase of slurry velocity and corresponding increase in the fraction of solid in the slurry. In addition, the increasing stirring intensity results uniform distribution of species and fraction of solid in the slurry. It is also found from the simulation that the distribution of solid fraction and species is dependent on cooling rate conditions. At low cooling rate, the fragmentation of dendrites from the solid/liquid interface is more.