955 resultados para poly(o- toluidine co aniline)
Resumo:
Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed.
Resumo:
In this paper we report the preparation and dielectric properties of poly o-toluidine:poly vinyl chloride composites in pellet and film forms. The composites were prepared using ammonium persulfate initiator and HCl dopant. The characterization is done by TGA and DSC. The dielectric properties including dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, absorption coefficient, and penetration depth were studied in the microwave field. An HP8510 vector network analyzer with rectangular cavity resonator was used for the study. Sbands (2-4 GHz), C band (5-8 GHz), and X band (8-12 GHz) frequencies were used in the microwave field. Comparisons between the pellet and film forms of composites were also included. The result shows that the dielectric properties in the microwave field are dependent on the frequency and on the method of preparation.
Resumo:
Two types of poly(epsilon-caprolactone (CLo)-co-poly(epsilon-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. Both cyclic comonomers were added simultaneously in the reaction medium for the First type or materials where copolymers have a random distribution of counits, as evidenced by H-1 and C-13 NMR. For the second type of copolymers, the cyclic comonomers were added sequentially, yielding diblock poly(ester-amides). The materials were characterized by differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS), and transmission and scanning electron microscopies (TEM and SEM). Their biodegradation in compost was also studied. All copolymers were found to be miscible by the absence of structure in the melt. TEM revealed that all samples exhibited a crystalline lamellar morphology. DSC and WAXS showed that in a wide composition range (CLo contents from 6 to 55%) only the CLa units were capable of crystallization in the random copolymers. The block copolymer samples only experience a small reduction of crystallization and melting temperature with composition, and this was attributed to a dilution effect caused by the miscible noncrystalline CLo units. The comparison between block and random copolymers provided a unique opportunity to distinguish the dilution effect of the CLo units on the crystallization and melting of the polyamide phase from the chemical composition effect in the random copolymers case, where the CLa sequences are interrupted statistically by the CLo units, making the crystallization of the polyamide strongly composition dependent. Finally, the enzymatic degradation of the copolymers in composted soil indicate a synergistic behavior where much faster degradation was obtained for random copolymers witha CLo content larger than 30% than for neat PCL.
Resumo:
The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).
Resumo:
The objective of the present work was to evaluate the relevance of the 2-methylcitric acid cycle (2MCC) to the catabolism of propionate in Burkholderia sacchari. Two B. sacchari mutants unable to grow on propionate were obtained: one disrupted in acnM, and the other in acnM and prpC deleted. An operative 2MCC significantly reduces the bacterial ability to incorporate 3-hydroxyvalerate (3HV) into a biodegradable copolyester accumulated from carbohydrates plus propionate. The efficiency of the mutants in converting propionate to 3HV units (Y(3HV/prp)) increased from 0.09 g.g(-1) to 0.81-0.96 g.g(-1), indicating that acnM and prpC are both essential for growth on propionate. None of the mutations resulted in achievement of the maximum theoretical Y(3HV/prp) (1.35 g.g(-1)). When increasing concentrations of propionate were supplied, decreasing values of Y(3HV/prp) were observed. The results obtained corroborate the hypothesis of the presence of other propionate catabolic pathways in B. sacchari. The 2MCC would be the more operative pathway, but a second pathway, which remains to be elucidated, would assume more importance under propionate concentrations of 1 g.L(-1) or higher. The efficiency in converting propionate to 3HV units can be improved by decreasing the propionate concentrations, owing to the role of the 2MCC.
Resumo:
This work presents a FT-Raman study (lambda(0) = 1064 nm) of naturally occurring polyester poly[(R)-3-hydroxybutyrate] (PHB) and its copolymer poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) with 5,8 and 12 mol % of HV (hydroxyvalerate). The FT-Raman spectra of films indicate that full width at half height of the band centered at 1725 cm(-1) and relative intensity of bands at 1443 and 1458 cm(-1) can be use to estimate the crystalline degree in film samples. The similarity between Raman spectra of molten PHB and PHBV and theirs CDCl(3) solutions suggested that molten polymers present similar conformation than polymers in solution. Raman data of these samples showed that bands at 1220, 1402, 1725, 2998 and 3009 cm(-1) are due to crystalline helical structure and the bands at 1453, 1740, 2881, 2938 and 2990 cm(-1) are originated from disordered domains. It is shown that composition of PHBV samples can be estimated by analyzing the ratio of the intensity of the bands at 2938 cm(-1) (nu C-H) and 1740 cm(-1) (nu C=O) in the spectra of solutions and of bands at 1354 (wCH(2)) and 1740 cm(-1) (nu C=O) in spectra of molten polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Local anesthetic agents cause temporary blockade of nerve impulses productiong insensitivity to painful stimuli in the area supplied by that nerve. Bupivacaine (BVC) is an amide-type local anesthetic widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. in this study, we prepared and characterized nanosphere formulations containing BVC. To achieve these goals, BVC loaded poly(DL-lactide-co-glycolide) (PLGA) nanospheres (NS) were prepared by nanopreciptation and characterized with regard to size distribution, drug loading and cytotoxicity assays. The 2(3-1) factorial experimental design was used to study the influence of three different independent variables on nanoparticle drug loading. BVC was assayed by HPLC, the particle size and zeta potential were determined by dynamic light scattering. BVC was determined using a combined ultrafiltration-centrifugation technique. The results of optimized formulations showed a narrow size distribution with a polydispersivity of 0.05%, an average diameter of 236.7 +/- 2.6 nm and the zeta potential -2.93 +/- 1,10 mV. In toxicity studies with fibroblast 3T3 cells, BVC loaded-PLGA-NS increased cell viability, in comparison with the effect produced by free BVC. In this way, BVC-loaded PLGA-NS decreased BVC toxicity. The development of BVC formulations in carriers such as nanospheres could offer the possibility of controlling drug delivery in biological systems, prolonging the anesthetic effect and reducing toxicity.
Resumo:
Poly(o-methylaniline) (poly-o-toluidine, PTOL) was synthesized by chemical oxidation of o-toluidine with ammonium peroxydisulfate in an aqueous 1.0 mol L -1 HCl solution. The progress of polymerization was followed by measuring the open-circuit potential (OCP) of a Pt electrode immersed in the reaction medium with the polymerization time. The chemical synthesis of PTOL was carried out at different monomer:oxidant (M:O) molar ratios (4:1, 2:1, 1.5:1, 1:1, and 0.66:1), and the products obtained were characterized by infrared spectroscopy, gel permeation chromatography, and X-ray diffraction. The molecular weight and percentage of crystallinity of PTOL are higher for samples synthesized in an excess of the monomer, i.e. at higher M:O ratios. However, the yield of PTOL prepared at higher M:O ratios is considerably low, in particular at a 4:1 M:O ratio, which is the M:O ratio most commonly used in the literature to synthesize polyaniline and its derivatives.
Resumo:
A series of segmented poly(urethane-urea)s containing 1,3,5 triazine in the hard block and hexamethylene spacers in the soft block was prepared. The hard to soft segment ratio was varied systematically, to afford a series of polymers in which the chromophore concentration varied from 4.2% to 18.1%. Although triazine emission is located in the UV region, the films with higher content of the chromophore emitted a visible blue light (425 nm) when excited at the very red-edge of the absorption band. The photophysical properties of the materials were strongly dependent on the relative amount of triazine moieties along the main chain. Isolated moieties emit in copolymers with small amount of triazine groups, indicating that even though in solid state, these moieties tend to be apart. Two photophysical consequences were observed when the amount of triazine increases: there is some energy transfer process involving isolated moieties with consequent decrease of the lifetime and an additional red-edge emission attributed to aggregated lumophores. The mono-exponential decay observed for the isolated form is substituted by a bi-exponential decay of the aggregated species. The materials were not strong emitters, but since the N-containing triazine moieties are good electron transport groups, the polymers have potential application as electron transport enhancers in various applications. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The structure and the thermodegradation behavior of both poly(methyl methacrylate)-co-poly(3-tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)-co-poly(3- tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. © 2012 Society of Plastics Engineers.
Resumo:
A simple method was used to synthesize poly(2-aminophenol), poly(2-aminophenol-co-Aniline) and polyaniline nanocomposites with sodium-montmorillonite (Na-M) using in situ intercalative oxidative polymerization. Morphology and thermal properties of the synthesized nanocomposites were examined by transmission electron microscopy (TEM) and thermogravimetric analysis. The thermal analysis shows an improved thermal stability of the nanocomposites in comparison with the pure poly(2-aminophenol). The intercalation of polymers into the clay layers was confirmed by X-ray diffraction studies, TEM images and FTIR spectroscopy. In addition, the room temperature conductivity values of these nanocomposites varied between 8.21 × 10−5 and 6.76 × 10−4 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites, has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization into Na-M produces electroactive polymers.
Resumo:
Studies have demonstrated that polymeric biomaterials have the potential to support osteoblast growth and development for bone tissue repair. Poly( beta- hydroxybutyrate- co- beta- hydroxyvalerate) ( PHBV), a bioabsorbable, biocompatible polyhydroxy acid polymer, is an excellent candidate that, as yet, has not been extensively investigated for this purpose. As such, we examined the attachment characteristics, self- renewal capacity, and osteogenic potential of osteoblast- like cells ( MC3T3- E1 S14) when cultured on PHBV films compared with tissue culture polystyrene ( TCP). Cells were assayed over 2 weeks and examined for changes in morphology, attachment, number and proliferation status, alkaline phosphatase ( ALP) activity, calcium accumulation, nodule formation, and the expression of osteogenic genes. We found that these spindle- shaped MC3T3- E1 S14 cells made cell - cell and cell - substrate contact. Time- dependent cell attachment was shown to be accelerated on PHBV compared with collagen and laminin, but delayed compared with TCP and fibronectin. Cell number and the expression of ALP, osteopontin, and pro- collagen alpha 1( I) mRNA were comparable for cells grown on PHBV and TCP, with all these markers increasing over time. This demonstrates the ability of PHBV to support osteoblast cell function. However, a lag was observed for cells on PHBV in comparison with those on TCP for proliferation, ALP activity, and cbfa- 1 mRNA expression. In addition, we observed a reduction in total calcium accumulation, nodule formation, and osteocalcin mRNA expression. It is possible that this cellular response is a consequence of the contrasting surface properties of PHBV and TCP. The PHBV substrate used was rougher and more hydrophobic than TCP. Although further substrate analysis is required, we conclude that this polymer is a suitable candidate for the continued development as a biomaterial for bone tissue engineering.
Resumo:
This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.
Resumo:
Amine functionalities were introduced onto the surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by applying radio frequency ammonia plasma treatment and wet ethylenediamine treatment. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) for chemical composition and Raman microspectroscopy for the spatial distribution of the chemical moieties. The relative amount of amine functionalities introduced onto the PHBV surface was determined by exposing the treated films to the vapor of trifluoromethylbenzaldehyde (TFBA) prior to XPS analysis. The highest amount of amino groups on the PHBV surface could be introduced by use of ammonia plasma at short treatment times of 5 and 10 s, but no effect of plasma power within the range of 2.5-20 W was observed. Ethylenediamine treatment yielded fewer surface amino groups, and in addition an increase in crystallinity as well as degradation of PHBV was evident from Fourier transform infrared spectroscopy. Raman maps showed that the coverage of amino groups on the PHBV surfaces was patchy with large areas having no amine functionalities.