936 resultados para phase rule one component
Resumo:
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-density liquid phases. We have used the density-functional theory form of Wertheim's first-order perturbation theory of association, as implemented by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)], to calculate the surface tension, and the density and degree of association profiles, at the liquid-vapor interface of our model. In reentrant systems, where AB bonds dominate, an unusual thickening of the interface is observed at low temperatures. Furthermore, the surface tension versus temperature curve reaches a maximum, in agreement with Bernardino and Telo da Gama's mesoscopic Landau-Safran theory [Phys. Rev. Lett. 109, 116103 (2012)]. If BB attractions are also present, competition between AB and BB bonds gradually restores the monotonic temperature dependence of the surface tension. Lastly, the interface is "hairy," i.e., it contains a region where the average chain length is close to that in the bulk liquid, but where the density is that of the vapor. Sufficiently strong BB attractions remove these features, and the system reverts to the behavior seen in atomic fluids.
Resumo:
The treatment of patients with recurrent glioblastoma remains a major oncologic problem, with median survival after progression of 7-9 months. To determine the maximum tolerated dose and dose-limiting toxicity (DLT), the combination of dasatinib and cyclonexyl-chloroethyl-nitrosourea (CCNU) was investigated in this setting. The study was designed as multicenter, randomized phase II trial, preceded by a lead-in safety phase. The safety component reported here, which also investigated pharmacokinetics and preliminary clinical activity, required expansion and is therefore considered a phase I part to establish a recommended dosing regimen of the combination of CCNU (90-110 mg/m(2)) and dasatinib (100-200 mg daily). Overall, 28 patients were screened, and 26 patients were enrolled. Five dose levels were explored. DLTs, mainly myelosuppression, occurred in 10 patients. Grade 3 or 4 neutropenia was recorded in 7 patients (26.9%) and thrombocytopenia in 11 patients (42.3%). No significant effect of CCNU coadministration on dasatinib pharmacokinetics was found. Median progression-free survival (PFS) was 1.35 months (95% confidence interval: 1.2-1.4) and 6-month PFS was 7.7%. In this phase I study of recurrent glioblastoma patients, the combination of CCNU and dasatinib showed significant hematological toxicities and led to suboptimal exposure to both agents.
Resumo:
We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
Resumo:
A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced reaction interconverting two components is formulated. An interplay between phase separation, orientational ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources, and vortex defects.
Resumo:
Teaching the measurement of blood pressure for both nursing and public health nursing students The purpose of this two-phase study was to develop the teaching of blood pressure measurement within the nursing degree programmes of the Universities of Applied Sciences. The first survey phase described what and how blood pressure measurement was taught within nursing degree programmes. The second intervention phase (2004-2005) evaluated first academic year nursing and public health nursing students’ knowledge and skills results for blood pressure measurement. Additionally, the effect on the Taitoviikko experimental group students’ blood pressure measurement knowledge and skills level. A further objective was to construct models for an instrument (RRmittTest) to evaluate nursing students measurement of blood pressure (2003-2009). The research data for the survey phase were collected from teachers (total sampling, N=107, response rate 77%) using a specially developed RRmittopetus-questionnaire. Quasi-experimental study data on the RRmittTest-instrument was collected from students (purposive sampling, experimental group, n=29, control group, n=44). The RRmittTest consisted of a test of knowledge (Tietotesti) and simulation-based test (TaitoSimkäsi and Taitovideo) of skills. Measurements were made immediately after the teaching and in clinical practice. Statistical methods were used to analyse the results and responses to open-ended questions were organised and classified. Due to the small amount of materials involved and the results of distribution tests of the variables, non-parametric analytic methods were mainly used. Experimental group and control group similar knowledge and skills teaching was based on the results of the national survey phase (RRmittopetus) questionnaire results. Experimental group teaching includes the supervised Taitoviikko teaching method. During Taitoviikko students studied blood pressure measurement at the municipal hospital in a real nursing environment, guided by a teacher and a clinical nursing professional. In order to evaluate both learning and teaching the processes and components of blood pressure measurement were clearly defined as follows: the reliability of measurement instruments, activities preceding blood pressure measurement, technical execution of the measurement, recording, lifestyle guidance and measurement at home (self-monitoring). According to the survey study, blood pressure measurement is most often taught at Universities of Applied Sciences, separately, as knowledge (teaching of theory, 2 hours) and skills (classroom practice, 4 hours). The teaching was implemented largely in a classroom and was based mainly on a textbook. In the intervention phase the students had good knowledge of blood pressure measurement. However, their blood pressure measurement skills were deficient and the control group students, in particular, were highly deficient. Following in clinical practice the experimental group and control group students’ blood pressure measurement recording knowledge improve and experimental groups declined lifestyle guidance. Skills did not improve within any of the components analysed. The control groups` skills on the whole, declined statistically.There was a significant decline amongst the experimental group although only in one component measured. The results describe the learning results for first academic year students and no parallel conclusions should be drawn when considering any learning results for graduating students. The results support the use and further development of the Taitoviiko teaching method. The RRmittTest developed for the study should be assessed and the results seen from a negative perspective. This evaluation tool needs to be developed and retested.
Resumo:
The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.
Resumo:
We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.
Resumo:
Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution.
Resumo:
We analyze a threshold contact process on a square lattice in which particles are created on empty sites with at least two neighboring particles and are annihilated spontaneously. We show by means of Monte Carlo simulations that the process undergoes a discontinuous phase transition at a definite value of the annihilation parameter, in accordance with the Gibbs phase rule, and that the discontinuous transition exhibits critical behavior. The simulations were performed by using boundary conditions in which the sites of the border of the lattice are permanently occupied by particles.
Resumo:
The electromagnetic tensor for inclusive electron scattering off the pion Wμν for momentum transfers such that q+ = 0, (q+ = q0 + q3) is shown to obey a sum-rule for the component W++. From this sum-rule, one can define the quark-antiquark correlation function in the pion, which characterizes the transverse distance distribution between the quark and antiquark in the light-front pion wave-function. Within the realistic models of the relativistic pion wave function (including instanton vacuum inspired wave function) it is shown that the value of the two-quark correlation radius (rqq̄) is near twice the pion electromagnetic radius (rπ), where rπ ≈ 2/3 fm. We also define the correlation length lcorr where the two-particle correlation have an extremum. The estimation of lcorr ≈ 0.3-0,5 fm is very close to estimations from instanton models of QCD vacuum. It is also shown that the above correlation is very sensitive to the pion light-front wave-function models. © 1997 Elsevier Science B.V.
Resumo:
The dependences of phase stability and solid state phase transitions on the crystallite size in ZrO2-10, 12 and 14 mol% Sc2O3 nanopowders are investigated by X-ray powder diffraction using a synchrotron source (S-XPD). The average crystallite sizes lie within the range of 35 to 100 nm, approximately. At room temperature these solid solutions were previously characterised as mixtures of a cubic phase and one or two rhombohedral phases, beta and gamma, with their fractions depending on composition and average crystallite sizes. In this study, it is shown that at high temperatures these solid solutions become cubic single-phased. The size-dependent temperatures of the transitions from the rhombohedral phases to the cubic phase at high temperature are determined through the analyses of a number of S-XPD patterns. These transitions were studied on cooling and on heating, exhibiting hysteresis effects whose relevant features are size and composition dependent.
Resumo:
Oligonucleotides have been extensively used in basic research of gene expression and function, vaccine design, and allergy and cancer therapy. Several oligonucleotide-based formulations have reached the clinical trial phase and one is already on the market. All these applications, however, are dependent on suitable carriers that protect oligonucleotides against degradation and improve their capture by target cells. The cationic lipid diC14-amidine efficiently delivers nucleic acids to mammalian cells. It was recently shown that diC14-amidine bilayers present an interdigitated phase which strongly correlates with a potent fusogenic activity at low temperatures. Interdigitated phases correspond to very ordered gel phases where the two bilayer leaflets are merged; they usually result from perturbations at the interfacial region such as modifications of the polar headgroup area or dehydration of the bilayer. Interdigitation has been described for asymmetric lipids or mixed-chain lipids of different chain lengths and for lipids with large effective headgroup sizes. It has also been described for symmetric lipids under pressure modifications or in the presence of alcohol, glycerol, acetonitrile, polymyxin B, or ions like thiocyanate. Surprisingly, the role of polyelectrolytes on membrane interdigitation has been only poorly investigated. In the present work, we use dynamic light scattering (DLS), differential scanning calorimetry (DSC), and electron spin resonance (ESR) to explore the effect of a small single-stranded oligonucleotide (ODN) polyelectrolyte on the structure and colloid stability of interdigitated diC14-amidine membranes.