717 resultados para organische Halbleiter, Thiadiazoloquinoxalin, FET, ambipolar


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs), which can efficiently transport both holes and electrons, using a single type of electrode, are currently of great interest due to their possible applications in complementary metal oxide semiconductor (CMOS)-like circuits, sensors, and in light-emitting transistors. Several theoretical and experimental studies have argued that most organic semiconductors should be able to transport both types of carrier, although typically unipolar behavior is observed. One factor that can compromise ambipolar transport in organic semiconductors is poor solid state overlap between the HOMO (p-type) or LUMO (n-type) orbitals of neighboring molecules in the semiconductor thin film. In the search of low-bandgap ambipolar materials, where the absence of skeletal distortions allows closer intermolecular π-π stacking and enhanced intramolecular π-conjugation, a new family of oligothiophene-naphthalimide assemblies have been synthesized and characterized, in which both donor and acceptor moieties are directly conjugated through rigid linkers. In previous works we found that oligothiophene-napthalimide assemblies connected through amidine linkers (NDI derivates) exhibit skeletal distortions (50-60º) arising from steric hindrance between the carbonyl group of the arylene core and the sulphur atom of the neighbored thiophene ring (see Figure 1). In the present work we report novel oligo- and polythiophene–naphthalimide analogues NAI-3T, NAI-5T and poly-NAI-8C-3T, in which the connections of the amidine linkage have been inverted in order to prevent steric interactions. Thus, the nitrogen atoms are directly connected to the naphthalene moiety in NAI derivatives while they were attached directly to the thiophene moiety in the previously investigated NDI-3T and NDI-5T. In Figure 1 is depicted the calculated molecular structure of NAI-3T together with that of NDI-3T showing how the steric interactions are not present in the novel NAI derivative. The planar skeletons in these new family induce higher degree of crystallinity and the carrier charge transport can be switched from n-type to ambipolar behaviour. The highest FET performance is achieved for vapor-deposited films of NAI-3T with mobilities of 1.95x10-4cm2V-1s-1 and 2.00x10-4cm2V-1s-1 for electrons and holes, respectively. Finally, these planar semiconductors are compared with their NDI derivates analogues, which exhibit only n-type mobility, in order to understand the origin of the ambipolarity in this new series of molecular semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of ambipolar fluxes on nanoparticle charging in a typical low-pressure parallel-plate glow discharge is considered. It is shown that the equilibrium values of the nanoparticle charge in the plasma bulk and near-electrode areas are strongly affected by the ratio S ath i of the ambipolar flux and the ion thermal velocities. Under typical experimental conditions the above ratio is neither S ath i≪ 1 nor S ath i≫1, which often renders the commonly used approximations of the purely thermal or "ion wind" ion charging currents inaccurate. By using the general approximation for the ambipolar drift-affected ion flux on the nanoparticle surface, it appears possible to obtain more accurate values of the nanoparticle charge that usually deviate within 10-25 % from the values obtained without a proper accounting for the ambipolar ion fluxes. The implications of the results obtained for glow discharge modeling and nanoparticle manipulation in low-pressure plasmas are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution processable diketopyrrolopyrrole (DPP)-bithiophene polymers (PDBT) with long branched alkyl side chains on the DPP unit are synthesized. These polymers have favourable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for the injection and transport of both holes and electrons. Organic thin film transistors (OTFTs) using these polymers as semiconductors and gold as source/drain electrodes show typical ambipolar characteristics with very well balanced high hole and electron mobilities (μ h = 0.024 cm 2 V -1 s -1 and μ e = 0.056 cm 2 V -1 s -1). These simple and high-performing polymers are promising materials for ambipolar organic thin film transistors for low-cost CMOS-like logic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have synthesized two novel diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) copolymers poly{3,6-dithiophene-2-yl-2,5-di(2-octyl)- pyrrolo[3,4-c]pyrrole-1,4-dione-alt-1,5-bis(dodecyloxy)naphthalene} (PDPPT-NAP) and poly{3,6-dithiophene-2-yl-2,5-di(2-butyldecyl)-pyrrolo[3,4-c]pyrrole-1,4- dione-alt-2-dodecyl-2H-benzo[d][1,2,3]triazole} (PDPPT-BTRZ) via direct arylation organometallic coupling. Both copolymers contain a common electron withdrawing DPP building block which is combined with electron donating alkoxy naphthalene and electron withdrawing alkyl-triazole comonomers. The number average molecular weight (Mn) determined by gel permeation chromatography (GPC) for polymer PDPPT-NAP is around 23 400 g mol-1 whereas for polymer PDPPT-BTRZ it is 18 600 g mol-1. The solid state absorption spectra of these copolymers show a wide range of absorption from 400 nm to 1000 nm with optical band gaps calculated from absorption cut off values in the range of 1.45-1.30 eV. The HOMO values determined for PDPPT-NAP and PDPPT-BTRZ copolymers from photoelectron spectroscopy in air (PESA) data are 5.15 eV and 5.25 eV respectively. These polymers exhibit promising p-channel and ambipolar behaviour when used as an active layer in organic thin-film transistor (OTFT) devices. The highest hole mobility measured for polymer PDPPT-NAP is around 0.0046 cm2 V-1 s-1 whereas the best ambipolar performance was calculated for PDPPT-BTRZ with a hole and electron mobility of 0.01 cm2 V-1 s-1 and 0.006 cm2 V-1 s-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Furan substituted diketopyrrolopyrrole (DBF) combined with benzothiadiazole based polymer semiconductor PDPP-FBF has been synthesized and evaluated as an ambipolar semiconductor in organic thin-film transistors. Hole and electron mobilities as high as 0.20 cm 2 V -1 s -1 and 0.56 cm 2 V -1 s -1, respectively, are achieved for PDPP-FBF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability of storing multi-bit information is one of the most important challenges in memory technologies. An ambipolar polymer which intrinsically has the ability to transport electrons and holes as a semiconducting layer provides an opportunity for the charge trapping layer to trap both electrons and holes efficiently. Here, we achieved large memory window and distinct multilevel data storage by utilizing the phenomena of ambipolar charge trapping mechanism. As fabricated flexible memory devices display five well-defined data levels with good endurance and retention properties showing potential application in printed electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable charge-trapping behaviors including unipolar charge trapping of one type of charge carrier and ambipolar trapping of both electrons and holes in a complementary manner is highly desirable for low power consumption multibit flash memory design. Here, we adopt a strategy of tuning the Fermi level of reduced graphene oxide (rGO) through self-assembled monolayer (SAM) functionalization and form p-type and n-type doped rGO with a wide range of manipulation on work function. The functionalized rGO can act as charge-trapping layer in ambipolar flash memories, and a dramatic transition of charging behavior from unipolar trapping of electrons to ambipolar trapping and eventually to unipolar trapping of holes was achieved. Adjustable hole/electron injection barriers induce controllable Vth shift in the memory transistor after programming operation. Finally, we transfer the ambipolar memory on flexible substrates and study their charge-trapping properties at various bending cycles. The SAM-functionalized rGO can be a promising candidate for next-generation nonvolatile memories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thiophene–tetrafluorophenyl–thiophene donor–acceptor–donor building block was used in combination with a furan-substituted diketopyrrolopyrrole for synthesizing the polymer semiconductor, PDPPF-TFPT. Due to the balance of tetrafluorophenylene/diketopyrrolopyrrole electron-withdrawing and furan/thiophene electron-donating moieties in the backbone, PDPPF-TFPT exhibits ambipolar behaviour in organic thin-film transistors, with hole and electron mobilities as high as 0.40 cm2 V−1 s−1 and 0.12 cm2 V−1 s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. This hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though silicon tunnel field effect transistor (TFET) has attracted attention for sub-60 mV/decade subthreshold swing and very small OFF current (IOFF), its practical application is questionable due to low ON current (ION) and complicated fabrication process steps. In this paper, a new n-type classical-MOSFET-alike tunnel FET architecture is proposed, which offers sub-60 mV/decade subthreshold swing along with a significant improvement in ION. The enhancement in ION is achieved by introducing a thin strained SiGe layer on top of the silicon source. Through 2D simulations it is observed that the device is nearly free from short channel effect (SCE) and its immunity towards drain induced barrier lowering (DIBL) increases with increasing germanium mole fraction. It is also found that the body bias does not change the drive current but after body current gets affected. An ION of View the MathML source and a minimum average subthreshold swing of 13 mV/decade is achieved for 100 nm channel length device with 1.2 V supply voltage and 0.7 Ge mole fraction, while maintaining the IOFF in fA range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FET based MEMS microphones comprise of a flexible diaphragm that works as the moving gate of the transistor. The integrated electromechanical transducer can be made more sensitive to external sound pressure either by increasing the mechanical or the electrical sensitivities. We propose a method of increasing the overall sensitivity of the microphone by increasing its electrical sensitivity. The proposed microphone uses the transistor biased in the sub-threshold region where the drain current depends exponentially on the difference between the gate-to-source voltage and the threshold voltage. The device is made more sensitive without adding any complexity in the mechanical design of the diaphragm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we propose the design and simulation study of a novel transistor, called HFinFET, which is a hybrid of an HEMT and a FinFET, to obtain excellent performance and good OFF-state control. Followed by the description of the design, 3-D device simulation has been performed to predict the characteristics of the device. The device has been benchmarked against published state of the art HEMT as well as planar and nonplanar Si n-MOSFET data of comparable gate length using standard benchmarking techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This correspondence aims at reporting the results of an analysis carried out to find the effect of a linear potential variation on the gate of an FET.