991 resultados para mathematical reasoning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Explaining appears to dominate primary teachers’ understanding of mathematical reasoning when it is not confused with problem solving. Drawing on previous literature of mathematical reasoning, we generate a view of the critical aspects of reasoning that may assist primary teachers when designing and enacting tasks to elicit and develop mathematical reasoning. The task used in this study of children’s reasoning is a number commonality problem. We analysed written and verbal samples of reasoning gathered from children in grades 3 and 4 from three primary schools in Australia and one elementary school in Canada to map the variation in their reasoning. We found that comparing and contrasting was a critical aspect of forming conjectures when generalising in this context, an action not specified in frameworks for generalising in early algebra. The variance in children’s reasoning elicited through this task also illuminated the difference between explaining and justifying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical reasoning is now featured in the mathematics curriculum documents of many nations, but this necessitates changes to teaching practice and hence a need for professional learning. The development of children’s mathematical reasoning requires appropriate encouragement and feedback from their teacher who can only do this if they recognise mathematical reasoning in children’s actions and words. As part of a larger study, we explored whether observation of educators conducting mathematics lessons can develop teachers’ sensitivity in noticing children’s reasoning and consideration of how to support reasoning. In the Mathematical Reasoning Professional Learning Research Program, demonstration lessons were conducted in Australian and Canadian primary classrooms. Data sources included post-lesson group discussions. Observation of demonstration lessons and engagement in post-lesson discussions proved to be effective vehicles for developing a professional eye for noticing children’s individual and whole-class reasoning. In particular, the teachers noticed that children struggled to employ mathematical language to communicate their reasoning and viewed limitations in language as a major barrier to increasing the use of mathematical reasoning in their classrooms. Given the focus of teachers’ noticing of the limitations in some types of mathematical language, it seems that targeted support is required for teachers to facilitate classroom discourse for reasoning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reasoning is an important aspect in the understanding and learning of mathematics. This paper reports on a case study presenting one Australian primary teacher’s reflections regarding the role played by a professional learning program in her developing understanding of mathematical reasoning. Examination of the transcripts of two interviews identified changes in her perceptions of mathematical reasoning by mapping interview responses against the Mathematical Reasoning Framework (Herbert et al., 2015). This change indicates that a well planned program of professional learning based on a demsonstration is efficacious in developing teachers’ understanding of mathematical reasoning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Observation of fellow educators conducting demonstration lessons is one avenue for teachers to develop sensitivity to noticing students’ reasoning. We examined teachers’ noticing of children’s learning behaviours in one demonstration lesson of the Mathematical Reasoning Professional Learning Research Program (MRPLRP). The observations of teachers evident in the audio-taped post-lesson group interviews conducted at one school are reported in this paper. The teachers noticed that the children struggled to employ mathematical language to communicate their reasoning and expressed concern about gaps in children’s understanding of key mathematical concepts. The teachers viewed limitations in language and mathematical conceptual understandings as a barrier to effective reasoning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this action research study of my classroom of seventh grade mathematics, I investigated the use of non-traditional activities to enhance mathematical connections. The types of nontraditional activities used were hands-on activities, written explanations, and oral communication that required students to apply a new mathematical concept to either prior knowledge or a realworld application. I discovered that the use of non-traditional activities helped me reach a variety of learners in my classroom. These activities also increased my students’ abilities to apply their mathematical knowledge to different applications. Having students explain their reasoning during non-traditional activities improved their communications skills, both orally and in writing. As a result of this research, I plan to incorporate more non-traditional activities into my curriculum. In doing so, I hope to continue to increase my students’ abilities to solve problems. I also plan to incorporate the use of written explanations of my students’ mathematical reasoning in order to continue to improve their communication of mathematics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório de estágio de mestrado, Educação (Didática da Matemática), Universidade de Lisboa, Instituto de Educação, 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório final apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclos do Ensino Básico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Projeto de Intervenção apresentado à Escola Superior de Educação de Lisboa para obtenção do grau de Mestre em Educação Especial, Especialização em Problemas de Aprendizagem e Comportamento

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclos do Ensino Básico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viva@Mat is a project developed by four Math teachers from the School of Industrial Studies and Management (ESEIG) that was born with the fundamental objective of engaging ESEIG students with different math backgrounds in Math challenging activities. Some of these activities were transformed into real palpable materials and others into small interactive ones, being the great majority of them proposed by ESEIG’ students themselves. This small project rapidly grew into something we didn’t expect – it did flow over the walls of our institution to the general involving community – specifically to pre-university schools through the Viva@Math Exhibits – Orange, Blue and Green (the fourth, the Purple one is still in development). Nowadays, Viva@Math Exhibits – the public face of the Project – are itinerant and have been travelling between several, and different institutions (pre-university schools, preparatory schools, libraries, among others), around ESEIG and IPP area of influence and having registered visitors/participants of all ages. In this article we will describe the Viva@Math Project, its different activities that are categorized in some “great groups” like Numerical Trivia, Logic Activities and Mental Calculation, Puzzles, Geometric Curiosities, Magic Tricks, among others, designed to challenge students to use the underlying logical-mathematical reasoning to any ordinary and everyday activity. We will give specific and concrete examples of some of the activities developed and, also, reproduce of the general stimulating feedback the Project receives from the enrolled “actors” (teachers, students and their relatives, institutions, among others). We feel that this Project has become a small “bridge” between the pre-university schools and Higher Education Institutions (HEI), in trying to shorten the “gap” between the institutions of different levels of education and bring them to work together.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to investigate Howard Gardner's (1983) Multiple Intelligences theory, which proposes that there are eight independent intelligences: Linguistic, Spatial, Logical/Mathematical, Interpersonal, Intrapersonal, Naturalistic, Bodily-Kinesthetic, and Musical. To explore Gardner's theory, two measures of each ability area were administered to 200 participants. Each participant also completed a measure of general cognitive ability, a personality inventory, an ability self-rating scale, and an ability self-report questionnaire. Nonverbal measures were included for most intelligence domains, and a wide range of content was sampled in Gardner's domains. Results showed that all tests of purely cognitive abilities were significantly correlated with the measure of general cognitive ability, whereas Musical, Bodily-Kinesthetic, and one of the Intrapersonal measures were not. Contrary to what Multiple Intelligences theory would seem to predict, correlations among the tests revealed a positive manifold and factor analysis indicated a large factor of general intelligence, with a mathematical reasoning test and a classification task from the Naturalistic domain having the highest ^- loadings. There were only minor sex differences in performance on the ability tests. Participants' self-estimates of ability were significantly and positively correlated with actual performance in some, but not all, intelligences. With regard to personality, a hypothesized association between Openness to Experience and crystallized intelligence was supported. The implications of the findings in regards to the nature of mental abilities were discussed, and recommendations for further research were made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La mémoire à court terme visuelle (MCTv) est un système qui permet le maintien temporaire de l’information visuelle en mémoire. La capacité en mémoire à court terme se définit par le nombre d’items qu’un individu peut maintenir en mémoire sur une courte période de temps et est limitée à environ quatre items. Il a été démontré que la capacité en MCTv et les habiletés mathématiques sont étroitement liées. La MCTv est utile dans beaucoup de composantes liées aux mathématiques, comme la résolution de problèmes, la visualisation mentale et l’arithmétique. En outre, la MCTv et le raisonnement mathématique font appel à des régions similaires du cerveau, notamment dans le cortex pariétal. Le sillon intrapariétal (SIP) semble être particulièrement important, autant dans la réalisation de tâches liées à la MCTv qu’aux habiletés mathématiques. Nous avons créé une tâche de MCTv que 15 participants adultes en santé ont réalisée pendant que nous enregistrions leur activité cérébrale à l’aide de la magnétoencéphalographie (MEG). Nous nous sommes intéressés principalement à la composante SPCM. Une évaluation neuropsychologique a également été administrée aux participants. Nous souhaitions tester l’hypothèse selon laquelle l’activité cérébrale aux capteurs pariéto-occipitaux pendant la tâche de MCTv en MEG sera liée à la performance en mathématiques. Les résultats indiquent que l’amplitude de l’activité pariéto-occipitale pendant la tâche de MCTv permet de prédire les habiletés mathématiques ainsi que la performance dans une tâche de raisonnement perceptif. Ces résultats permettent de confirmer le lien existant entre les habiletés mathématiques et le fonctionnement sous-jacent à la MCTv.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Econometrics is a young science. It developed during the twentieth century in the mid-1930’s, primarily after the World War II. Econometrics is the unification of statistical analysis, economic theory and mathematics. The history of econometrics can be traced to the use of statistical and mathematics analysis in economics. The most prominent contributions during the initial period can be seen in the works of Tinbergen and Frisch, and also that of Haavelmo in the 1940's through the mid 1950's. Right from the rudimentary application of statistics to economic data, like the use of laws of error through the development of least squares by Legendre, Laplace, and Gauss, the discipline of econometrics has later on witnessed the applied works done by Edge worth and Mitchell. A very significant mile stone in its evolution has been the work of Tinbergen, Frisch, and Haavelmo in their development of multiple regression and correlation analysis. They used these techniques to test different economic theories using time series data. In spite of the fact that some predictions based on econometric methodology might have gone wrong, the sound scientific nature of the discipline cannot be ignored by anyone. This is reflected in the economic rationale underlying any econometric model, statistical and mathematical reasoning for the various inferences drawn etc. The relevance of econometrics as an academic discipline assumes high significance in the above context. Because of the inter-disciplinary nature of econometrics (which is a unification of Economics, Statistics and Mathematics), the subject can be taught at all these broad areas, not-withstanding the fact that most often Economics students alone are offered this subject as those of other disciplines might not have adequate Economics background to understand the subject. In fact, even for technical courses (like Engineering), business management courses (like MBA), professional accountancy courses etc. econometrics is quite relevant. More relevant is the case of research students of various social sciences, commerce and management. In the ongoing scenario of globalization and economic deregulation, there is the need to give added thrust to the academic discipline of econometrics in higher education, across various social science streams, commerce, management, professional accountancy etc. Accordingly, the analytical ability of the students can be sharpened and their ability to look into the socio-economic problems with a mathematical approach can be improved, and enabling them to derive scientific inferences and solutions to such problems. The utmost significance of hands-own practical training on the use of computer-based econometric packages, especially at the post-graduate and research levels need to be pointed out here. Mere learning of the econometric methodology or the underlying theories alone would not have much practical utility for the students in their future career, whether in academics, industry, or in practice This paper seeks to trace the historical development of econometrics and study the current status of econometrics as an academic discipline in higher education. Besides, the paper looks into the problems faced by the teachers in teaching econometrics, and those of students in learning the subject including effective application of the methodology in real life situations. Accordingly, the paper offers some meaningful suggestions for effective teaching of econometrics in higher education

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper uses data from two mathematics lessons to explore the nature of progressive discourse and examine critical features of teacher actions that contribute to mathematics classrooms functioning as communities of inquiry. Features found to promote progressive discourse include a focus on the conceptual elements of the curriculum and the use of complex, challenging tasks that problematised the curriculum; the orchestration of student reporting to allow all students to contribute to progress towards the community's solution to the problem; and a focus on seeking, recognizing, and drawing attention to mathematical reasoning and justification, and using this as a basis for learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the last decade or so, educational policy makers and researchers in many countries have been calling for significant changes to the way mathematics is taught in secondary schools. Australian mathematics curriculum documents now promote learning goals that go beyond mastery of a pre-determined body of knowledge and procedures - the traditional emphasis on facts, skills, formulae - to include mathematical reasoning and problem solving, communication, and real world applications. There is also pressure to move away from over-reliance on teacher-centred practices such as exposition and individual seatwork, towards activities that promote learners' involvement in constructing, applying, and evaluating mathematical ideas. Further impetus for reform comes from research recommending that if learners are to develop mathematically powerful forms of thinking and habits of mind, then classrooms should immerse them in the authentic practices of the discipline by supporting a culture of collaboration and sense-making. Teaching Secondary School Mathematics - incorporates recent developments in research and practice and applications to teaching mathematics in Australian secondary schools. Covering such areas as curriculum, pedagogy and assessment; teaching mathematical content; equity and diversity in the classroom; and professional and community engagement, it is an invaluable resource for all practising and pre-service mathematics teachers.