969 resultados para k nearest neighbour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses one of the emerging topics in Sonar Signal Processing.,viz.the implementation of a target classifier for the noise sources in the ocean, as the operator assisted classification turns out to be tedious,laborious and time consuming.In the work reported in this thesis,various judiciously chosen components of the feature vector are used for realizing the newly proposed Hierarchical Target Trimming Model.The performance of the proposed classifier has been compared with the Euclidean distance and Fuzzy K-Nearest Neighbour Model classifiers and is found to have better success rates.The procedures for generating the Target Feature Record or the Feature vector from the spectral,cepstral and bispectral features have also been suggested.The Feature vector ,so generated from the noise data waveform is compared with the feature vectors available in the knowledge base and the most matching pattern is identified,for the purpose of target classification.In an attempt to improve the success rate of the Feature Vector based classifier,the proposed system has been augmented with the HMM based Classifier.Institutions where both the classifier decisions disagree,a contention resolving mechanism built around the DUET algorithm has been suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biometrics applied to mobile devices are of great interest for security applications. Daily scenarios can benefit of a combination of both the most secure systems and most simple and extended devices. This document presents a hand biometric system oriented to mobile devices, proposing a non-intrusive, contact-less acquisition process where final users should take a picture of their hand in free-space with a mobile device without removals of rings, bracelets or watches. The main contribution of this paper is threefold: firstly, a feature extraction method is proposed, providing invariant hand measurements to previous changes; second contribution consists of providing a template creation based on hand geometric distances, requiring information from only one individual, without considering data from the rest of individuals within the database; finally, a proposal for template matching is proposed, minimizing the intra-class similarity and maximizing the inter-class likeliness. The proposed method is evaluated using three publicly available contact-less, platform-free databases. In addition, the results obtained with these databases will be compared to the results provided by two competitive pattern recognition techniques, namely Support Vector Machines (SVM) and k-Nearest Neighbour, often employed within the literature. Therefore, this approach provides an appropriate solution to adapt hand biometrics to mobile devices, with an accurate results and a non-intrusive acquisition procedure which increases the overall acceptance from the final user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current Information Age, data production and processing demands are ever increasing. This has motivated the appearance of large-scale distributed information. This phenomenon also applies to Pattern Recognition so that classic and common algorithms, such as the k-Nearest Neighbour, are unable to be used. To improve the efficiency of this classifier, Prototype Selection (PS) strategies can be used. Nevertheless, current PS algorithms were not designed to deal with distributed data, and their performance is therefore unknown under these conditions. This work is devoted to carrying out an experimental study on a simulated framework in which PS strategies can be compared under classical conditions as well as those expected in distributed scenarios. Our results report a general behaviour that is degraded as conditions approach to more realistic scenarios. However, our experiments also show that some methods are able to achieve a fairly similar performance to that of the non-distributed scenario. Thus, although there is a clear need for developing specific PS methodologies and algorithms for tackling these situations, those that reported a higher robustness against such conditions may be good candidates from which to start.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the internal dynamics of two cellular automaton models with heterogeneous strength fields and differing nearest neighbour laws. One model is a crack-like automaton, transferring ail stress from a rupture zone to the surroundings. The other automaton is a partial stress drop automaton, transferring only a fraction of the stress within a rupture zone to the surroundings. To study evolution of stress, the mean spectral density. f(k(r)) of a stress deficit held is: examined prior to, and immediately following ruptures in both models. Both models display a power-law relationship between f(k(r)) and spatial wavenumber (k(r)) of the form f(k(r)) similar tok(r)(-beta). In the crack model, the evolution of stress deficit is consistent with cyclic approach to, and retreat from a critical state in which large events occur. The approach to criticality is driven by tectonic loading. Short-range stress transfer in the model does not affect the approach to criticality of broad regions in the model. The evolution of stress deficit in the partial stress drop model is consistent with small fluctuations about a mean state of high stress, behaviour indicative of a self-organised critical system. Despite statistics similar to natural earthquakes these simplified models lack a physical basis. physically motivated models of earthquakes also display dynamical complexity similar to that of a critical point system. Studies of dynamical complexity in physical models of earthquakes may lead to advancement towards a physical theory for earthquakes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most sugarcane breeding programs in Australia use large unreplicated trials to evaluate clones in the early stages of selection. Commercial varieties that are replicated provide a method of local control of soil fertility. Although such methods may be useful in detecting broad trends in the field, variation often occurs on a much smaller scale. Methods such as spatial analysis adjust a plot for variability by using information from immediate neighbours. These techniques are routinely used to analyse cereal data in Australia and have resulted in increased accuracy and precision in the estimates of variety effects. In this paper, spatial analyses in which the variability is decomposed into local, natural, and extraneous components are applied to early selection trials in sugarcane. Interplot competition in cane yield and trend in sugar content were substantial in many of the trials and there were often large differences in the selections between the spatial and current method used by the Bureau of Sugar Experiment Stations. A joint modelling approach for tonnes sugar per hectare in response to fertility trends and interplot competition is recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Um dos maiores desafios tecnológicos no presente é o de se conseguir gerar e manter, de uma maneira eficiente e consistente, uma base de dados de objectos multimédia, em particular, de imagens. A necessidade de desenvolver métodos de pesquisa automáticos baseados no conteúdo semântico das imagens tornou-se de máxima importância. MPEG-7 é um standard que descreve o contudo dos dados multimédia que suportam estes requisitos operacionais. Adiciona um conjunto de descritores audiovisuais de baixo nível. O histograma é a característica mais utilizada para representar as características globais de uma imagem. Neste trabalho é usado o “Edge Histogram Descriptor” (EHD), que resulta numa representação de baixo nível que permite a computação da similaridade entre imagens. Neste trabalho, é obtida uma caracterização semântica da imagem baseada neste descritor usando dois métodos da classificação: o algoritmo k Nearest Neighbors (k-NN) e uma Rede Neuronal (RN) de retro propagação. No algoritmo k-NN é usada a distância Euclidiana entre os descritores de duas imagens para calcular a similaridade entre imagens diferentes. A RN requer um processo de aprendizagem prévia, que inclui responder correctamente às amostras do treino e às amostras de teste. No fim deste trabalho, será apresentado um estudo sobre os resultados dos dois métodos da classificação.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The temperature dependence of electrical conductivity and the photoconductivity of polycrystalline Cu2ZnSnS4 were investigated. It was found that at high temperatures the electrical conductivity was dominated by band conduction and nearest-neighbour hopping. However, at lower temperatures, both Mott variable-range hopping (VRH) and Efros–Shklovskii VRH were observed. The analysis of electrical transport showed high doping levels and a large compensation ratio, demonstrating large degree of disorder in Cu2ZnSnS4. Photoconductivity studies showed the presence of a persistent photoconductivity effect with decay time increasing with temperature, due to the presence of random local potential fluctuations in the Cu2ZnSnS4 thin film. These random local potential fluctuations cannot be attributed to grain boundaries but to the large disorder in Cu2ZnSnS4.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of rockfall characteristics and spatial distribution is fundamental to understand and model the main factors that predispose to failure. In our study we analysed LiDAR point clouds aiming to: (1) detect and characterise single rockfalls; (2) investigate their spatial distribution. To this end, different cluster algorithms were applied: 1a) Nearest Neighbour Clutter Removal (NNCR) in combination with the Expectation?Maximization (EM) in order to separate feature points from clutter; 1b) a density based algorithm (DBSCAN) was applied to isolate the single clusters (i.e. the rockfall events); 2) finally we computed the Ripley's K-function to investigate the global spatial pattern of the extracted rockfalls. The method allowed proper identification and characterization of more than 600 rockfalls occurred on a cliff located in Puigcercos (Catalonia, Spain) during a time span of six months. The spatial distribution of these events proved that rockfall were clustered distributed at a welldefined distance-range. Computations were carried out using R free software for statistical computing and graphics. The understanding of the spatial distribution of precursory rockfalls may shed light on the forecasting of future failures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Copper arsenite CuAs2O4 and Copper antimonite CuSb2O4 are S=1/2 (Cu2+ 3d9 electronic configuration) quasi-one-dimensional quantum spin-chain compounds. Both compounds crystallize with tetragonal structures containing edge sharing CuO6 octahedra chains which experience Jahn-Teller distortions. The basal planes of the octahedra link together to form CuO2 ribbon-chains which harbor Cu2+ spin-chains. These compounds are magnetically frustrated with competing nearest-neighbour and next-nearest-neighbour intrachain spin-exchange interactions. Despite the similarities between CuAs2O4 and CuSb2O4, they exhibit very different magnetic properties. In this thesis work, the physical properties of CuAs2O4 and CuSb2O4 are investigated using a variety of experimental techniques which include x-ray diffraction, magnetic susceptibility measurements, heat capacity measurements, Raman spectroscopy, electron paramagnetic resonance, neutron diffraction, and dielectric capacitance measurements. CuAs2O4 exhibits dominant ferromagnetic nearest-neighbour and weaker antiferromagnetic next-nearest-neighbour intrachain spin-exchange interactions. The ratio of the intrachain interactions amounts to Jnn/Jnnn = -4.1. CuAs2O4 was found to order with a ferromagnetic groundstate below TC = 7.4 K. An extensive physical characterization of the magnetic and structural properties of CuAs2O4 was carried out. Under the effect of hydrostatic pressure, CuAs2O4 was found to undergo a structural phase transition at 9 GPa to a new spin-chain structure. The structural phase transition is accompanied by a severe alteration of the magnetic properties. The high-pressure phase exhibits dominant ferromagnetic next-nearest-neighbour spin-exchange interactions and weaker ferromagnetic nearest-neighbour interactions. The ratio of the intrachain interactions in the high-pressure phase was found to be Jnn/Jnnn = 0.3. Structural and magnetic characterizations under hydrostatic pressure are reported and a relationship between the structural and magnetic properties was established. CuSb2O4 orders antiferromagnetically below TN = 1.8 K with an incommensurate helicoidal magnetic structure. CuSb2O4 is characterized by ferromagnetic nearest-neighbour and antiferromagnetic next-nearest-neighbour spin-exchange interactions with Jnn/Jnnn = -1.8. A (H, T) magnetic phase diagram was constructed using low-temperature magnetization and heat capacity measurements. The resulting phase diagram contains multiple phases as a consequence of the strong intrachain magnetic frustration. Indications of ferroelectricity were observed in the incommensurate antiferromagnetic phase.