Investigation of Frustrated Quasi-One-Dimensional Quantum Spin-Chain Materials


Autoria(s): Caslin, Kevin
Contribuinte(s)

Department of Physics

Data(s)

17/09/2015

17/09/2015

Resumo

Copper arsenite CuAs2O4 and Copper antimonite CuSb2O4 are S=1/2 (Cu2+ 3d9 electronic configuration) quasi-one-dimensional quantum spin-chain compounds. Both compounds crystallize with tetragonal structures containing edge sharing CuO6 octahedra chains which experience Jahn-Teller distortions. The basal planes of the octahedra link together to form CuO2 ribbon-chains which harbor Cu2+ spin-chains. These compounds are magnetically frustrated with competing nearest-neighbour and next-nearest-neighbour intrachain spin-exchange interactions. Despite the similarities between CuAs2O4 and CuSb2O4, they exhibit very different magnetic properties. In this thesis work, the physical properties of CuAs2O4 and CuSb2O4 are investigated using a variety of experimental techniques which include x-ray diffraction, magnetic susceptibility measurements, heat capacity measurements, Raman spectroscopy, electron paramagnetic resonance, neutron diffraction, and dielectric capacitance measurements. CuAs2O4 exhibits dominant ferromagnetic nearest-neighbour and weaker antiferromagnetic next-nearest-neighbour intrachain spin-exchange interactions. The ratio of the intrachain interactions amounts to Jnn/Jnnn = -4.1. CuAs2O4 was found to order with a ferromagnetic groundstate below TC = 7.4 K. An extensive physical characterization of the magnetic and structural properties of CuAs2O4 was carried out. Under the effect of hydrostatic pressure, CuAs2O4 was found to undergo a structural phase transition at 9 GPa to a new spin-chain structure. The structural phase transition is accompanied by a severe alteration of the magnetic properties. The high-pressure phase exhibits dominant ferromagnetic next-nearest-neighbour spin-exchange interactions and weaker ferromagnetic nearest-neighbour interactions. The ratio of the intrachain interactions in the high-pressure phase was found to be Jnn/Jnnn = 0.3. Structural and magnetic characterizations under hydrostatic pressure are reported and a relationship between the structural and magnetic properties was established. CuSb2O4 orders antiferromagnetically below TN = 1.8 K with an incommensurate helicoidal magnetic structure. CuSb2O4 is characterized by ferromagnetic nearest-neighbour and antiferromagnetic next-nearest-neighbour spin-exchange interactions with Jnn/Jnnn = -1.8. A (H, T) magnetic phase diagram was constructed using low-temperature magnetization and heat capacity measurements. The resulting phase diagram contains multiple phases as a consequence of the strong intrachain magnetic frustration. Indications of ferroelectricity were observed in the incommensurate antiferromagnetic phase.

Identificador

http://hdl.handle.net/10464/7213

Idioma(s)

eng

Publicador

Brock University

Palavras-Chave #Material Science #Condensed Matter Physics #Magnetic Materials #Quantum spin-chains
Tipo

Electronic Thesis or Dissertation