983 resultados para human expert cognition, real-time trajectory planning, autonomous UAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthotopic or intracardiac injection of human breast cancer cell lines into immunocompromised mice allows study of the molecular basis of breast cancer metastasis. We have established a quantitative real-time PCR approach to analyze metastatic spread of human breast cancer cells inoculated into nude mice via these routes. We employed MDA-MB-231 human breast cancer cells genetically tagged with a bacterial β-galactosidase (Lac-Z) retroviral vector, enabling their detection by TaqMan® real-time PCR. PCR detection was linear, specific, more sensitive than conventional PCR, and could be used to directly quantitate metastatic burden in bone and soft organs. Attesting to the sensitivity and specificity of the PCR detection strategy, as few as several hundred metastatic MDA-MB-231 cells were detectable in 100 μm segments of paraffin-embedded lung tissue, and only in samples adjacent to sections that scored positive by histological detection. Moreover, the measured real-time PCR metastatic burden in the bone environment (mouse hind-limbs, n = 48) displayed a high correlation to the degree of osteolytic damage observed by high resolution X-ray analysis (r2 = 0.972). Such a direct linear relationship to tumor burden and bone damage substantiates the so-called 'vicious cycle' hypothesis in which metastatic tumor cells promote the release of factors from the bone which continue to stimulate the tumor cells. The technique provides a useful tool for molecular and cellular analysis of human breast cancer metastasis to bone and soft organs, can easily be extended to other cell/marker/organ systems, and should also find application in preclinical assessment of anti-metastatic modalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the topic of real-time decision making by autonomous city vehicles. Beginning with an overview of the state of research, the paper presents the vehicle decision making & control systemarchitecture, explains the subcomponents which are relevant for decision making (World Model and Driving Maneuver subsystem), and presents the decision making process. Experimental test results confirmthe suitability of the developed approach to deal with the complex real-world urban traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

提出了一种用于工业机器人时间最优轨迹规划及轨迹控制的新方法,它可以确保在关节位移、速度、加速度以及二阶加速度边界值的约束下,机器人手部沿笛卡尔空间中规定路径运动的时间阳短。在这种方法中,所规划的关节轨迹都采用二次多项式加余弦函数的形式,不仅可以保证各关节运动的位移、速度 、加速度连续而且还可以保证各关节运动的二阶加速度连续。采用这种方法,既可以提高机器人的工作效率又可以延长机器人的工作寿命以PUMA560机器人为对象进行了计算机仿真和机器人实验,结果表明这种方法是正确的有效的。它为工业机器人在非线性运动学约束条件下的时间最优轨迹规划及控制问题提供了一种较好的解决方案。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time polymerase chain reaction (PCR) has recently been described as a new tool to measure and accurately quantify mRNA levels. In this study, we have applied this technique to evaluate cytokine mRNA synthesis induced by antigenic stimulation with purified protein derivative (PPD) or heparin-binding haemagglutinin (HBHA) in human peripheral blood mononuclear cells (PBMC) from Mycobacterium tuberculosis-infected individuals. Whereas PPD and HBHA optimally induced IL-2 mRNA after respectively 8 and 16 to 24 h of in vitro stimulation, longer in vitro stimulation times were necessary for optimal induction of interferon-gamma (IFN-gamma) mRNA, respectively 16 to 24 h for PPD and 24 to 96 h for HBHA. IL-13 mRNA was optimally induced by in vitro stimulation after 16-48 h for PPD and after 48 to 96 h for HBHA. Comparison of antigen-induced Th1 and Th2 cytokines appears, therefore, valuable only if both cytokine types are analysed at their optimal time point of production, which, for a given cytokine, may differ for each antigen tested. Results obtained by real-time PCR for IFN-gamma and IL-13 mRNA correlated well with those obtained by measuring the cytokine concentrations in cell culture supernatants, provided they were high enough to be detected. We conclude that real-time PCR can be successfully applied to the quantification of antigen-induced cytokine mRNA and to the evaluation of the Th1/Th2 balance, only if the kinetics of cytokine mRNA appearance are taken into account and evaluated for each cytokine measured and each antigen analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure minimum loss of system security and revenue it is essential that faults on underground cable systems be located and repaired rapidly. Currently in the UK, the impulse current method is used to prelocate faults, prior to using acoustic methods to pinpoint the fault location. The impulse current method is heavily dependent on the engineer's knowledge and experience in recognising/interpreting the transient waveforms produced by the fault. The development of a prototype real-time expert system aid for the prelocation of cable faults is described. Results from the prototype demonstrate the feasibility and benefits of the expert system as an aid for the diagnosis and location of faults on underground cable systems.