20 resultados para hiili


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to evaluate the influence of ambient aerosol particles on cloud formation, climate and human health, detailed information about the concentration and composition of ambient aerosol particles is needed. The dura-tion of aerosol formation, growth and removal processes in the atmosphere range from minutes to hours, which highlights the need for high-time-resolution data in order to understand the underlying processes. This thesis focuses on characterization of ambient levels, size distributions and sources of water-soluble organic carbon (WSOC) in ambient aerosols. The results show that in the location of this study typically 50-60 % of organic carbon in fine particles is water-soluble. The amount of WSOC was observed to increase as aerosols age, likely due to further oxidation of organic compounds. In the boreal region the main sources of WSOC were biomass burning during the winter and secondary aerosol formation during the summer. WSOC was mainly attributed to a fine particle mode between 0.1 - 1 μm, although different size distributions were measured for different sources. The WSOC concentrations and size distributions had a clear seasonal variation. Another main focus of this thesis was to test and further develop the high-time-resolution methods for chemical characterization of ambient aerosol particles. The concentrations of the main chemical components (ions, OC, EC) of ambient aerosol particles were measured online during a year-long intensive measurement campaign conducted on the SMEAR III station in Southern Finland. The results were compared to the results of traditional filter collections in order to study sampling artifacts and limitations related to each method. To achieve better a time resolution for the WSOC and ion measurements, a particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC). The PILS-TOC-IC provided important data about diurnal variations and short-time plumes, which cannot be resolved from the filter samples. In summary, the measurements made for this thesis provide new information on the concentrations, size distribu-tions and sources of WSOC in ambient aerosol particles in the boreal region. The analytical and collection me-thods needed for the online characterization of aerosol chemical composition were further developed in order to provide more reliable high-time-resolution measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine the integrated climatic impacts of forestry and the use fibre-based packaging materials. The responsible use of forest resources plays an integral role in mitigating climate change. Forests offer three generic mitigation strategies; conservation, sequestration and substitution. By conserving carbon reservoirs, increasing the carbon sequestration in the forest or substituting fossil fuel intensive materials and energy, it is possible to lower the amount of carbon in the atmosphere through the use of forest resources. The Finnish forest industry consumed some 78 million m3 of wood in 2009, while total of 2.4 million tons of different packaging materials were consumed that same year in Finland. Nearly half of the domestically consumed packaging materials were wood-based. Globally the world packaging material market is valued worth annually some €400 billion, of which the fibre-based packaging materials account for 40 %. The methodology and the theoretical framework of this study are based on a stand-level, steady-state analysis of forestry and wood yields. The forest stand data used for this study were obtained from Metla, and consisted of 14 forest stands located in Southern and Central Finland. The forest growth and wood yields were first optimized with the help of Stand Management Assistant software, and then simulated in Motti for forest carbon pools. The basic idea was to examine the climatic impacts of fibre-based packaging material production and consumption through different forest management and end-use scenarios. Economically optimal forest management practices were chosen as the baseline (1) for the study. In the alternative scenarios, the amount of fibre-based packaging material on the market decreased from the baseline. The reduced pulpwood demand (RPD) scenario (2) follows economically optimal management practices under reduced pulpwood price conditions, while the sawlog scenario (3) also changed the product mix from packaging to sawnwood products. The energy scenario (4) examines the impacts of pulpwood demand shift from packaging to energy use. The final scenario follows the silvicultural guidelines developed by the Forestry Development Centre Tapio (5). The baseline forest and forest product carbon pools and the avoided emissions from wood use were compared to those under alternative forest management regimes and end-use scenarios. The comparison of the climatic impacts between scenarios gave an insight into the sustainability of fibre-based packaging materials, and the impacts of decreased material supply and substitution. The results show that the use of wood for fibre-based packaging purposes is favorable, when considering climate change mitigation aspects of forestry and wood use. Fibre-based packaging materials efficiently displace fossil carbon emissions by substituting more energy intensive materials, and they delay biogenic carbon re-emissions to the atmosphere for several months up to years. The RPD and the sawlog scenarios both fared well in the scenario comparison. These scenarios produced relatively more sawnwood, which can displace high amounts of emissions and has high carbon storing potential due to the long lifecycle. The results indicate the possibility that win-win scenarios exist by shifting production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog scenarios, both carbon pools and avoided emissions increased from the baseline simultaneously. On the opposite, the shift from packaging material to energy use caused the carbon pools and the avoided emissions to diminish from the baseline. Hence the use of virgin fibres for energy purposes, rather than forest industry feedstock biomass, should be critically judged if optional to each other. Managing the stands according to the silvicultural guidelines developed by the Forestry Development Centre Tapio provided the least climatic benefits, showing considerably lower carbon pools and avoided emissions. This seems interesting and worth noting, as the guidelines are the current basis for the forest management practices in Finland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon materials are found versatile and applicable in wide range of applications. During the recent years research of carbon materials has focussed on the search of environmentally friendly, sustainable, renewable and low-cost starting material sources as well as simple cost-efficient synthesis techniques. As an alternative synthesis technique in the production of carbon materials hydrothermal carbonization (HTC) has shown a great potential. Depending on the application HTC can be performed as such or as a pretreatment technique. This technique allows synthesis of carbon materials i.e. hydrochars in closed vessel in the presence of water and self-generated pressure at relatively low temperatures (180-250 ˚C). As in many applications well developed porosity and heteroatom distribution are in a key role. Therefore in this study different techniques e.g. varying feedstock, templating and post-treatment in order to introduce these properties to the hydrochars structure were performed. Simple monosaccharides i.e. fructose or glucose and more complex compounds such as cellulose and sludge were performed as starting materials. Addition of secondary precursor e.g. thiophenecarboxaldehyde and ovalbumin was successfully exploited in order to alter heteroatom content. It was shown that well-developed porosity (SBET 550 m2/g) can be achieved via one-pot approach (i.e. exploitation of salt mixture) without conventionally used post-carbonization step. Nitrogen-enriched hydrochars indicated significant Pb(II) and Cr(VI) removal efficiency of 240 mg/g and 68 mg/g respectively. Sulphur addition into carbon network was not found to have enhancing effect on the adsorption of methylene blue or change acidity of the carbon material. However, these hydrochars were found to remove 99.9 % methylene blue and adsorption efficiency of these hydrochars remained over 90 % even after regeneration. In addition to water treatment application N-rich high temperature treated carbon materials were proven applicable as electrocatalyst and electrocatalyst support. Hydrothermal carbonization was shown to be workable technique for the production of carbon materials with variable physico-chemical properties and therefore hydrochars could be applied in several different applications e.g. as alternative low-cost adsorbent for pollutant removal from water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Käytetyn ydinpolttoaineen loppusijoitus Olkiluodon kallioperään edellyttää kattavaa turvallisuusarviointia. Turvallisuusarviointi koostuu monista osista, joista yksi on biosfääriarviointi. Sen tavoitteena on selvittää mahdollisten säteilyannosten määriä ihmisille ja muulle luonnolle. Annosarvioinnin edellytyksenä on tuntea Olkiluodon paikalliset olosuhteet ja mahdolliset kehityskulut. Yksi keskeinen osa biosfääriarviointia on mallintaa radionuklidien kulkeutumista kallioperästä maanpinnalle. Kulkeutumisen kannalta on olennaista tuntea maaperän ominaisuudet, koska maaperä toimii rajapintana kallioperän ja elävän luonnon välillä. Tässä tutkimuksessa selvitettiin Olkiluodon saarelle tehtyjen koekuoppien OL-KK25-26 maaperän geokemiallisia ja fysikaalisia ominaisuuksia sekä alkuaineiden in situ jakaantumiskertoimia (Kd). Jakaantumiskertoimilla selvitetään alkuaineiden ja radionuklidien liikkuvuutta erilaisissa ympäristöissä. Tässä tutkimuksessa keskityttiin käytetystä ydinpolttoaineesta löytyviin analogisiin alkuaineisiin (Ag, Cl, Cs, I, Mo, Nb, Ni, Pb, Se, Sn ja Sr), jotka ovat turvallisuusarvioinnin kannalta kaikkein tärkeimpiä. Kd – arvot laskettiin alkuaineiden konsentraatioista, jotka mitattiin maanäytteistä kahdella erilaisella uuttomenetelmällä. Heikkoliukoisten ja kasvien saatavilla olevien alkuaineiden konsentraatiot määritettiin NH4Ac (pH 4,5) uutolla ja kokonaispitoisuudet HNO3-HF uutolla sekä LiBO2- fuusiolla. Lisäksi näytteistä maaritettiin maalajit ja niiden raekokojakaumat, orgaaninen aines (LOI), pH, liuennut orgaaninen ja epäorgaanin hiili, pääanionit, mineraalikoostumus, kationinvaihtokapasiteetti (CEC) sekä emäskylläisyys (BS). Koekuopista määritetyile Kd – arvoille ja muille muuttujille tehtiin lopuksi korrelaatioanalyysit, joilla pyrittiin löytämään alkuaineiden liikkuvuuteen eniten vaikuttavia tekijöitä. Maaperää Olkiluodossa voidaan pitää hyvin heterogeenisenä, koska hyvin lähellä toisiian sijainneissa koekuopissa niin maalajit kuin muut ominaisuudet vaihtelivat runsaasti. Myös ominaisuudet eri maakerroksissa vaihtelivat merkittävästi. Alkuaineiden konsentraatioiden sekä Kd - arvojen muutokset olivat voimakkaasti yhteydessä maalajityyppeihin. Merkittävimmin Kd - arvoihin vaikuttivat mineraalikoostumus, savipitoisuus ja raekoko. Muita konsentraatioihin ja jakaantumiskertoimiin vaikuttavia muuttujia olivat orgaanisen aineksen määrä sekä pH. Lisäksi tietyillä, luonnossa pääasiassa anionisilla, alkuaineilla korrelaatiot olivat heikompia tai päinvastaisia kuin muilla aineilla. Tutkimuksen tulokset lisäävät ymmärrystä maaperän ominaisuuksien ja alkuaineiden liikkuvuuden riippuvuuksista. Tuntemalla maaperän ominaisuudet ja alkuaineiden Kd - arvot sekä niiden väliset riippuvuudet, voidaan radionuklidien kulkeutumista kallioperästä maanpinnalle arvioida entistä luotettavammin. Tutkimuksessa tuotettuja tuloksia ja aineistoja hyödynnetään myös pintaympäristön ekosysteemien ja maaperän mallinnuksissa.