764 resultados para food intake larvae


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge about the optimal rearing conditions, such as water temperature and quality, photoperiod and density, with the understanding of animal nutritional requirements forms the basis of economically stable aquaculture for freshwater crayfish. However, the shift from a natural environment to effective culture conditions induces several changes, not only at the population level, but also at the individual level. The social contacts between conspecifics increase with increasing animal density. The competition for limited resources (e.g. food, shelter, mates) is more severe with the presence of agonistic behaviour and may lead to unequal distribution of these. The objectives of this study were to: 1) study the distribution of a common food resource between communally reared signal crayfish (Pacifastacus leniusculus) and to assign potential feeding hierarchy on the basis of individual food intake measurements, 2) explore the possibilities of size distribution manipulations to affect population dynamics and food intake to improve growth and survival in culture and 3) study the effect of food ration and spatial distribution on food intake and to explore the effect of temperature and food ration on growth and body composition of freshwater crayfish. The feeding ranks between animals were assigned with a new method for individual food intake measurement of communally reared crayfish. This technique has a high feasibility and a great potential to be applied in crayfish aquaculture studies. In this study, signal crayfish showed high size-related variability in food consumption both among individuals within a group (inter-individual) and within individual day-to-day variation (intra-individual). Increased competition for food led to an unequal distribution of this resource and this may be a reason for large growth differences between animals. The consumption was significantly higher when reared individually in comparison with communal housing. These results suggest that communally housed crayfish form a feeding hierarchy and that the animal size is the major factor controlling the position in this hierarchy. The optimisation of the social environment ( social conditions ) was evaluated in this study as a new approach to crayfish aquaculture. The results showed that the absence of conspecifics (individual rearing vs. communal housing) affects growth rate, food intake and the proportion of injured animals, whereas size variation between animals influences the number and duration of agonistic encounters. In addition, animal size had a strong influence on the fighting success of signal crayfish reared in a social milieu with a wide size variation of conspecifics. Larger individuals initiated and won most of the competitions, which suggests size-based social hierarchy of P. leniusculus. This is further supported by the fact that the length and weight gain of smaller animals increased after size grading, maybe because of a better access to the food resource due to diminished social pressure. However, the high dominance index was not based on size under conditions of limited size variation, e.g. those characteristic of restocked natural populations and aquaculture, indicating the important role of behaviour on social hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that wrist pulse signals contain information about the status of health of a person and hence diagnosis based on pulse signals has assumed great importance since long time. In this paper the efficacy of signal processing techniques in extracting useful information from wrist pulse signals has been demonstrated by using signals recorded under two different experimental conditions viz. before lunch condition and after lunch condition. We have used Pearson's product-moment correlation coefficient, which is an effective measure of phase synchronization, in making a statistical analysis of wrist pulse signals. Contour plots and box plots are used to illustrate various differences. Two-sample t-tests show that the correlations show statistically significant differences between the groups. Results show that the correlation coefficient is effective in distinguishing the changes taking place after having lunch. This paper demonstrates the ability of the wrist pulse signals in detecting changes occurring under two different conditions. The study assumes importance in view of limited literature available on the analysis of wrist pulse signals in the case of food intake and also in view of its potential health care applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The food intake, growth, food conversion ratio and survival of yearling pufferfish, Fugu obscurus Abe, were investigated under different water salinity conditions over a 54-day period. Within the salinity regimes of 0 (freshwater), 8, 18, and 35parts per thousand, the food intake levels were 0.97%, 1.43%, 1.19% and 1.01%, respectively; food conversion ratios were 1.31, 1.93, 1.61 and 1.36, respectively; and specific growth rates were 0.41%, 1.15%, 0.84%, and 0.35%, respectively. The three data series were reduced with increasing salinity. However, the survival rates did not show the same tendencies, which were 80%, 100%, 100%, and 67%, respectively. There were significant differences among the treatments. In conclusion, the yearling pufferfish optimum culture salinity condition was about 8parts per thousand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model is developed to investigate the trade-offs between benefits and costs involved in zooplanktonic diel vertical migration (DVM) strategies. The 'venturous revenue' (VR) is used as the criterion for optimal trade-offs. It is a function of environmental factors and the age of zooplankter. During vertical migration, animals are assumed to check instantaneously the variations of environmental parameters and thereby select the optimal behavioral strategy to maximize the value of VR, i.e. taking up as much food as possible with a certain risk of mortality. The model is run on a diel time scale (24 h) in four possible scenarios during the animal's life history. The results show that zooplankton can perform normal DVM balancing optimal food intake against predation risk, with the profile of DVM largely modified by the age of zooplankter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut-hormone, ghrelin, activates the centrally expressed growth hormone secretagogue 1a (GHS-R1a) receptor, or ghrelin receptor. The ghrelin receptor is a G-protein coupled receptor (GPCR) expressed in several brain regions, including the arcuate nucleus (Arc), lateral hypothalamus (LH), ventral tegmental area (VTA), nucleus accumbens (NAcc) and amygdala. Activation of the GHS-R1a mediates a multitude of biological activities, including release of growth hormone and food intake. The ghrelin signalling system also plays a key role in the hedonic aspects of food intake and activates the dopaminergic mesolimbic circuit involved in reward signalling. Recently, ghrelin has been shown to be involved in mediating a stress response and to mediate stress-induced food reward behaviour via its interaction with the HPA-axis at the level of the anterior pituitary. Here, we focus on the role of the GHS-R1a receptor in reward behaviour, including the motivation to eat, its anxiogenic effects, and its role in impulsive behaviour. We investigate the functional selectivity and pharmacology of GHS-R1a receptor ligands as well as crosstalk of the GHS-R1a receptor with the serotonin 2C (5-HT2C) receptor, which represent another major target in the regulation of eating behaviour, stress-sensitivity and impulse control disorders. We demonstrate, to our knowledge for the first time, the direct impact of GHS-R1a signalling on impulsive responding in a 2-choice serial reaction time task (2CSRTT) and show a role for the 5-HT2C receptor in modulating amphetamine-associated impulsive action. Finally, we investigate differential gene expression patterns in the mesocorticolimbic pathway, specifically in the NAcc and PFC, between innate low- and high-impulsive rats. Together, these findings are poised to have important implications in the development of novel treatment strategies to combat eating disorders, including obesity and binge eating disorders as well as impulse control disorders, including, substance abuse and addiction, attention deficit hyperactivity disorder (ADHD) and mood disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale A recent review paper by Cooper (Appetite 44:133–150, 2005) has pointed out that a role for benzodiazepines as appetite stimulants has been largely overlooked. Cooper’s review cited several studies that suggested the putative mechanism of enhancement of food intake after benzodiazepine administration might involve increasing the perceived pleasantness of food (palatability). Objectives The present study examined the behavioral mechanism of increased food intake after benzodiazepine administration. Materials and methods The cyclic-ratio operant schedule has been proposed as a useful behavioral assay for differentiating palatability from regulatory effects on food intake (Ettinger and Staddon, Physiol Behav 29:455–458, 1982 and Behav Neurosci 97:639–653, 1983). The current study employed the cyclic-ratio schedule to determine whether the effects on food intake of chlordiazepoxide (CDP) (5.0 mg/kg), sodium pentobarbital (5.0 mg/kg), and picrotoxin (1.0 mg/kg) were mediated through palatability or regulatory processes. Results The results of this study show that both the benzodiazepine CDP and the barbiturate sodium pentobarbital increased food intake in a manner similar to increasing the palatability of the ingestant, and picrotoxin decreased food intake in a manner similar to decreasing the palatability of the ingestant. Conclusions These results suggest that the food intake enhancement properties of benzodiazepines are mediated through a mechanism affecting perceived palatability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obestatin is a recently discovered peptide hormone that appears to be involved in reducing food intake, gut motility and body weight. Obestatin is a product of the preproghrelin gene and appears to oppose several physiological actions of ghrelin. This study investigated the acute effects of obestatin (1-23) and the truncated form, obestatin (11-23), on feeding activity, glucose homeostasis or insulin secretion. Mice received either intraperitoneal obestatin (1-23) or (11-23) (1 mu mol/kg) 4 h prior to an allowed 15 min period of feeding. Glucose excursions and insulin responses were lowered by 64-77% and 39-41%, respectively, compared with saline controls. However this was accompanied by 43% and 53% reductions in food intake, respectively. The effects of obestatin peptides were examined under either basal or glucose (18 mmol/kg) challenge conditions to establish whether effects were independent of changes in feeding. No alterations in plasma glucose or insulin responses were observed. In addition, obestatin peptides had no effect on insulin sensitivity as revealed by hypoglycaemic response when co-administered with insulin. Our observations support a role for obestatin in regulating metabolism through changes of appetite, but indicate no direct actions on glucose homeostasis or insulin secretion. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obestatin (OB(1-23) is a 23 amino acid peptide encoded on the preproghrelin gene, originally reported to have metabolic actions related to food intake, gastric emptying and body weight. The biological instability of OB(1-23) has recently been highlighted by studies demonstrating its rapid enzymatic cleavage in a number of biological matrices. We assessed the stability of both OB(1-23) and an N-terminally PEGylated analogue (PEG-OB(1-23)) before conducting chronic in vivo studies. Peptides were incubated in rat liver homogenate and degradation monitored by LC-MS. PEG-OB(1-23) was approximately 3-times more stable than OB(1-23). Following a 14 day infusion of Sprague Dawley rats with 50 mol/kg/day of OB(1-23) or a N-terminally PEGylated analogue (PEG-OB(1-23)), we found no changes in food/fluid intake, body weight and plasma glucose or cholesterol between groups. Furthermore, morphometric liver, muscle and white adipose tissue (WAT) weights and tissue triglyceride concentrations remained unaltered between groups. However, with stabilised PEG-OB(1-23) we observed a 40% reduction in plasma triglycerides. These findings indicate that PEG-OB(1-23) is an OB(1-23) analogue with significantly enhanced stability and suggest that obestatin could play a role in modulating physiological lipid metabolism, although it does not appear to be involved in regulation of food/fluid intake, body weight or fat deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several short-term studies have investigated the effects of a vegetable oil emulsion on subsequent food intake, although findings have been inconsistent. This work aimed to review all studies, and investigate differences in study outcomes based on methodology. All known studies were identified. Data were abstracted from published studies (n = 7). Details of unpublished studies were gained from investigators/sponsors (n = 5), or were unavailable for reasons of confidentiality (n = 4). Available data were combined using meta-analyses. A combined appetite suppressant effect of the emulsion compared with control was found for test meal intake at approximately 4, 12 and 36 h post-treatment: smallest combined mean difference (random effects model) = 0.53 MJ (95% confidence interval 0.20, 0.86), P < 0.01. However, considerable heterogeneity (variability) between study results was also found (smallest I2 = 94%, P < 0.01), questioning the predictive validity of the above findings. Meta-regression suggested this heterogeneity to be related to differences in the processed nature of the product, treatment dose and in particular year of study (smallest B = 0.54, 95% confidence interval 0.06, 1.03, P = 0.04), although again heterogeneity was found. The only consistent finding was a lack of effect on food intake 4 h post-preload in studies conducted after 2003. These results suggest a small but inconsistent appetite suppressant effect of the vegetable oil emulsion. However, due to the large heterogeneity, no definitive conclusions can be drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey x Holstein-Friesian (J x HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) x 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J x HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J x HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J x HF cows, whereas the J x HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype x environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.