109 resultados para emulsification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study used microchannel emulsification (MCE) to encapsulate quercetin in food grade oil-in-water (O/W) emulsions. A silicon microchannel plate (Model WMS 1-2) comprised of 10,300 discrete 10 × 104 μm microslots was connected to a circular microhole with an inner diameter of 10 μm. 1% (w/w) Tween 20 was used as optimized emulsifier in Milli-Q water, while 0.4 mg ml-1 quercetin in different oils served as a dispersed phase. The MCE was carried by injecting the dispersed phase at 2 ml h-1. Successful emulsification was conducted below the critical dispersed phase flux, with a Sauter mean diameter of 29 μm and relative span factor below 0.25. The O/W emulsions remained stable in terms of droplet coalescence at 4 and 25 °C for 30 days. The encapsulation efficiency of quercetin in the O/W emulsions was 80% at 4 °C and 70% at 25 °C during the evaluated storage period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stabilization of l-ascorbic acid (⌊-AA) is a challenging task for food and pharmaceutical industries. The study was conducted to prepare monodisperse aqueous microspheres containing enhanced concentrations of ⌊-AA by using microchannel emulsification (MCE). The asymmetric straight-through microchannel (MC) array used here constitutes 11 × 104 μm microslots connected to a 10 μm circular microholes. 5-30% (w/w) ⌊-AA was added to a Milli-Q water solution containing 2% (w/w) sodium alginate and 1% (w/w) magnesium sulfate, while the continuous phase constitutes 5% (w/w) tetraglycerol condensed ricinoleate in water-saturated decane. Monodisperse aqueous microspheres with average diameters (dav) of 18.7-20.7 μm and coefficients of variation (CVs) below 6% were successfully prepared via MCE regardless of the ⌊-AA concentrations applied. The collected microspheres were physically stable in terms of their dav and CV for >10 days of storage at 40°C. The aqueous microspheres exhibited ⌊-AA encapsulation efficiency exceeding 70% during the storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutritional deficiencies of ergocalciferol (VD2) and cholecalciferol (VD3) cause skeletal deformations. The primary aim of this study was to encapsulate VD2 and VD3 in food-grade oil-in-water (O/W) emulsions by using microchannel emulsification (MCE). Silicon asymmetric straight-through microchannel (MC) array consisting of 10 313 channels, each having an 11 × 104 μm microslot connected to a 10 μm circular microholes. 1% (w/w) sodium cholate or Tween 20 in water was used as the continuous phase, while 0.5% (w/w) of each VD2 and VD3 in different oils served as the dispersed phase. Monodisperse O/W emulsions with Sauter mean diameters of 28 to 32 μm and relative span factor widths below 0.3 were formulated via an asymmetric straight-through MC array under appropriate operating conditions. The monodisperse O/W emulsions stabilised with Tween 20 remained stable for >30 days with encapsulation efficiencies (EEs) of VD2 and VD3 of above 70% at 4 and 25 °C. In contrast, those stabilised with sodium cholate had stability of >30 days with their EEs of over 70% only at 25 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ergocalciferol is one important form of vitamin D that is needed for proper functioning of the human metabolic system. The study formulates monodisperse food grade ergocalciferol loaded oil-in-water (O/W) emulsions by microchannel emulsification (MCE). The primary characterization was performed with grooved MCE, while the storage stability and encapsulating efficiency (EE) were investigated with straight-through MCE. The grooved microchannel (MC) array plate has 5 × 18 μm MCs, while the asymmetric straight-through MC array plate consists of numerous 10 × 80 μm microslots each connected to a 10 μm diameter circular MC. Ergocalciferol at a concentration of 0.2-1.0% (w/w) was added to various oils and served as the dispersed phase, while the continuous phase constituted either of 1% (w/w) Tween 20, decaglycerol monolaurate (Sunsoft A-12) or β-lactoglobulin. The primary characterization indicated successful emulsification in the presence of 1% (w/w) Tween 20 or Sunsoft A-12. The average droplet diameter increased slowly with the increasing concentration of ergocalciferol and ranged from 28.3 to 30.0 μm with a coefficient of variation below 6.0%. Straight-through MCE was conducted with 0.5% (w/w) ergocalciferol in soybean oil together with 1% (w/w) Tween 20 in Milli-Q water as the optimum dispersed and continuous phases. Monodisperse O/W emulsions with a Sauter mean diameter (d3,2) of 34 μm with a relative span factor of less than 0.2 were successfully obtained from straight-through MCE. The resultant oil droplets were physically stable for 15 days (d) at 4 °C without any significant increase in d3,2. The monodisperse O/W emulsions exhibited an ergocalciferol EE of more than 75% during the storage period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of the emulsifying conditions and emulsifier type on production of water-in-oil (W/O) emulsions encapsulating ascorbic acid derivatives by microchannel (MC) emulsification. The ascorbic acid derivatives added in a dispersed aqueous phase are calcium ascorbate (AA-Ca) and ascorbic acid 2-glucoside (AA-2G). The continuous phase used was decane, soybean oil or their mixture, containing 5% (w/w) tetraglycerin monolaurate condensed ricinoleic acid ester or sorbitan trioleate. A hydrophobized silicon MC array plate (model: MS407) with a channel depth of 7μm was used for MC emulsification. The use of MC emulsification enabled successful encapsulation of AA-Ca and AA-2G in monodisperse W/O emulsion droplets with coefficients of variation (CV) less than 7%. Their average droplet diameter (dav) increased with increasing the continuous-phase viscosity that is similar or higher than the dispersed-phase viscosity. The dav and CV of the resultant monodisperse W/O emulsions were unaffected by the dispersed-phase flow rate below critical values of 1.2-1.6mLh-1 when using decane as the continuous-phase medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stabilizing l-ascorbic acid is a challenge for food industries. The present study aimed to formulate monodisperse food-grade water-in-oil-in-water (W/O/W) emulsions containing a high concentration of l-ascorbic acid in an inner aqueous phase using homogenization and subsequent microchannel emulsification (MCE). The microchannel (MC) array plate used here was a silicon asymmetric straight-through MC array that consists of numerous 10. μm. ×. 100. μm microslots with a 30. μm depth, each connected to a 10. μm-diameter circular MC with a 70. μm depth. Water-in-oil (W/O) emulsions contained a soybean oil solution with 4-8% (w/w) tetraglycerin condensed ricinoleic acid ester as a continuous phase and an aqueous solution with 10-30% (w/v) l-ascorbic acid, 1% (w/w) magnesium sulfate, and 1% (w/v) gelatin as an inner aqueous phase. The W/O emulsion droplets formulated using a rotor-starter homogenizer had average droplet diameters of 2.6-2.9. μm and coefficients of variation (CVs) of 13-17%. MCE was performed using a dispersed W/O emulsion phase and a 5. mM phosphate buffer containing 1% (w/w) decaglycerol monolaurate and 10-30% (w/v) D(+)-glucose as an outer aqueous phase. Monodisperse W/O/W emulsions containing W/O droplets with average diameters of 26.0-31.5. μm and CVs below 10% were successfully formulated via an asymmetric straight-through MC array at a low hydrophobic emulsifier concentration, regardless of l-ascorbic acid concentration. The W/O droplets dispersed in these monodisperse W/O/W emulsions were physically stable in variation of average diameter and CV for more than 10d of storage at 4. °C. The monodisperse W/O/W emulsions also exhibited l-ascorbic acid retention exceeding 80% during storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetic information on the resinification of furfuryl alcohol has been derived from the rate of increase of color intensity measured with a photoelectric colorimeter, the resinification being carried out isothermally in Clark-Lubs aqueous buffer solutions in the pH range of 1.0-2.2. The activation energy for polymerization is found to increase exponentially with pH. The time required for emulsification (which is quickly followed by separation of resin layer) to occur in an aqueous solution of furfuryl alcohol also increases exponentially with pH, but it decreases exponentially with temperature. This is described quantitatively by a single expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemispherical colloidal nanowells or microwells with hollow interiors are becoming increasingly important for the encapsulation of functional materials. There has been rapid progress to develop new methods to obtain such structures. In this work, we present emulsification approach to generate hemisphere and microcapsules of biocompatible organic polymer. The precise control over the size is exhibited by applying variable vortex effect. The hemispheres and microcapsules of a copolymer (BPVA-PVA) were characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These structures were used for loading of hydrophilic molecules and submicron colloidal particles to demonstrate their potential application. The introduction of hydrophobic groups on poly(vinyl alcohol) was crucial to obtain these structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas maltophilia CSV89, a soil bacterium, produces an extracellular biosurfactant, ''Biosur-Pm''. The partially purified product is nondialyzable and chemically composed of 50% protein and 12-15% sugar, which indicates the complex nature of Biosur-Pm. It reduces the surface tension of water from 73 to 53 x 10(-3) N m(-1) and has a critical micellar concentration of 80 mg/l. Compared to aliphatic hydrocarbons, Biosur-Pm shows good activity against aromatic hydrocarbons. The emulsion formed is stable and does not require any metal ions for emulsification. The kinetics of Biosur-Pm production suggest that its synthesis isa growth-associated and pH-dependent process. At pH 7.0, cells produced more Biosur-Pm with less cell surface hydrophobicity. At pH 8.0, however, the cells produced less Biosur-Pm with more cell surface hydrophobicity and showed a twofold higher affinity for aromatic hydrocarbons compared to the cells grown at pH 7.0. The Biosur-Pm showed a pH-dependent release, stimulated growth of the producer strain on mineral salts medium with 1-naphthoic acid when added externally, and facilitated the conversion of salicylate to catechol. All these results suggest that Biosur-Pm is probably a cell-wall component and helps in hydrocarbon assimilation/uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many industrial processes involve reaction between the two immiscible liquid systems. It is very important to increase the efficiency and productivity of such reactions. One of the important processes that involve such reactions is the metal-slag system. To increase the reaction rate or efficiency, one must increase the contact surface area of one of the phases. This is either done by emulsifying the slag into the metal phase or the metal into the slag phase. The latter is preferred from the stability viewpoint. Recently, we have proposed a simple and elegant mathematical model to describe metal emulsification in the presence of bottom gas bubbling. The same model is being extended here. The effect of slag and metal phase viscosity, density and metal droplet size on the metal droplet velocity in the slag phase is discussed for the above mentioned metal emulsification process. The models results have been compared with experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用耗散粒子动力学方法,研究了化学驱过程中乳化和润湿反转两个重要的物理化学现象.通过合理划分流体粒子和定义粒子之间相互作用参数,模拟了十二烷基苯磺酸钠、正十二烷和水三组分体系的自发乳化现象;通过附加固壁条件,模拟了在水动力作用下吸附在岩石表面的油珠发生破裂的非自发乳化过程,以及由于表面活性剂在岩石表面吸附而引起的润湿反转现象,比较了润湿反转前后残余油珠的运动情况.模拟结果表明:作为介观力学的离散粒子动力学方法,耗散粒子动力学方法可作为研究包含物理化学现象的化学驱渗流问题的重要手段.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os métodos tradicionais de estimular a produção de petróleo, envolvendo a injeção de água, vapor, gás ou outros produtos, estabeleceram a base conceitual para novos métodos de extração de óleo, utilizando micro-organismos e processos biológicos. As tecnologias que empregam os processos de bioestimulação e bioaumentação já são amplamente utilizadas em inúmeras aplicações industriais, farmacêuticas e agroindustriais, e mais recentemente, na indústria do petróleo. Dada a enorme dimensão econômica da indústria do petróleo, qualquer tecnologia que possa aumentar a produção ou o fator de recuperação de um campo petrolífero gera a expectativa de grandes benefícios técnicos, econômicos e estratégicos. Buscando avaliar o possível impacto de MEOR (microbial enhanced oil recovery) no fator de recuperação das reservas de óleo e gás no Brasil, e quais técnicas poderiam ser mais indicadas, foi feito um amplo estudo dessas técnicas e de diversos aspectos da geologia no Brasil. Também foram realizados estudos preliminares de uma técnica de MEOR (bioacidificação) com possível aplicabilidade em reservatórios brasileiros. Os resultados demonstram que as técnicas de MEOR podem ser eficazes na produção, solubilização, emulsificação ou transformação de diversos compostos, e que podem promover outros efeitos físicos no óleo ou na matriz da rocha reservatório. Também foram identificadas bacias petrolíferas brasileiras e recursos não convencionais com maior potencial para utilização de determinadas técnicas de MEOR. Finalmente, foram identificadas algumas técnicas de MEOR que merecem maiores estudos, entre as técnicas mais consolidadas (como a produção de biossurfatantes e biopolímeros, e o controle da biocorrosão), e as que ainda não foram completamente viabilizadas (como a gaseificação de carvão, óleo e matéria orgânica; a dissociação microbiana de hidratos de gás; a bioconversão de CO2 em metano; e a bioacidificação). Apesar de seu potencial ainda não ser amplamente reconhecido, as técnicas de MEOR representam o limiar de uma nova era na estimulação da produção de recursos petrolíferos existentes, e até mesmo para os planos de desenvolvimento de novas áreas petrolíferas e recursos energéticos. Este trabalho fornece o embasamento técnico para sugerir novas iniciativas, reconhecer o potencial estratégico de MEOR, e para ajudar a realizar seu pleno potencial e seus benefícios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we demonstrate laser emission from emulsion-based polymer dispersed liquid crystals. Such lasers can be easily formed on single substrates with no alignment layers. Remarkably, it is shown that there can exist two radically different laser emission profiles, namely, photonic band-edge lasing and non-resonant random lasing. The emission is controlled by simple changes in the emulsification procedure. Low mixing speeds generate larger droplets that favor photonic band edge lasing with the requisite helical alignment produced by film shrinkage. Higher mixing speeds generate small droplets, which facilitate random lasing by a non-resonant scattering feedback process. Lasing thresholds and linewidth data are presented showing the potential of controllable linewidth lasing sources. Sequential and stacked layers demonstrate the possibility of achieving complex, simultaneous multi-wavelength and "white-light" laser output from a wide variety of substrates including glass, metallic, paper and flexible plastic. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).