Monodisperse W/O/W emulsions encapsulating L-ascorbic acid: Insights on their formulation using microchannel emulsification and stability studies


Autoria(s): Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A.; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi
Data(s)

01/09/2014

Resumo

Stabilizing l-ascorbic acid is a challenge for food industries. The present study aimed to formulate monodisperse food-grade water-in-oil-in-water (W/O/W) emulsions containing a high concentration of l-ascorbic acid in an inner aqueous phase using homogenization and subsequent microchannel emulsification (MCE). The microchannel (MC) array plate used here was a silicon asymmetric straight-through MC array that consists of numerous 10. μm. ×. 100. μm microslots with a 30. μm depth, each connected to a 10. μm-diameter circular MC with a 70. μm depth. Water-in-oil (W/O) emulsions contained a soybean oil solution with 4-8% (w/w) tetraglycerin condensed ricinoleic acid ester as a continuous phase and an aqueous solution with 10-30% (w/v) l-ascorbic acid, 1% (w/w) magnesium sulfate, and 1% (w/v) gelatin as an inner aqueous phase. The W/O emulsion droplets formulated using a rotor-starter homogenizer had average droplet diameters of 2.6-2.9. μm and coefficients of variation (CVs) of 13-17%. MCE was performed using a dispersed W/O emulsion phase and a 5. mM phosphate buffer containing 1% (w/w) decaglycerol monolaurate and 10-30% (w/v) D(+)-glucose as an outer aqueous phase. Monodisperse W/O/W emulsions containing W/O droplets with average diameters of 26.0-31.5. μm and CVs below 10% were successfully formulated via an asymmetric straight-through MC array at a low hydrophobic emulsifier concentration, regardless of l-ascorbic acid concentration. The W/O droplets dispersed in these monodisperse W/O/W emulsions were physically stable in variation of average diameter and CV for more than 10d of storage at 4. °C. The monodisperse W/O/W emulsions also exhibited l-ascorbic acid retention exceeding 80% during storage.

Identificador

http://hdl.handle.net/10536/DRO/DU:30086053

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dro.deakin.edu.au/eserv/DU:30086053/khalid-formulationandcharacterizat-2014.pdf

http://www.dx.doi.org/10.1016/j.colsurfa.2014.04.019

Direitos

2014, Elsevier B.V.

Palavras-Chave #microchannel emulsification #water-in-oil-water emulsions #monodisperse droplets #L-ascorbic acid #high concentration #emulsifier concentration
Tipo

Journal Article