869 resultados para electroabsorption modulator (EAM)
Resumo:
Electrical and optical coupling in an electroabsorption (EA) modulator integrated with a distributed feedback (DFB) laser have been investigated. The integrated device is treated as a three-port optoelectronic device with two electrical ports and one optical output port. The scattering parameters of this three-port device have been measured in the designed experiment. The measured results indicate that there exists the electrical coupling between the DFB laser and EA modulator of the integrated light source whenever the current applied to the laser section is below or above the threshold current, and the optical coupling will have stronger influence on the frequency responses than the electrical coupling when the bias current is above the threshold. A small-signal equivalent circuit model for the integrated device is established considering both the electrical and internal optical coupling. Experiments show that the equivalent circuit model is reasonable and the determined element values are correct. Based on the measurement and modeling, the influences of the electrical and optical coupling on the high-frequency responses are investigated and the effective measure to eliminate the additional modulation in the DFB laser are discussed.
Resumo:
An electroabsorption modulator using the intrastep quantum well (IQW) active region is fabricated for optical network systems. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio elliciency 10 dB/V and low capacitance (< 0.42 pF), with which an ultra high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for multi-quantum well EAMs without heat sinks.
Resumo:
An electroabsorption modulator with large optical cavity was designed and fabricated successfully. Both the simulated and experimental results show that, the larger optical cavity structure introduced could obviously improve the optical profile of EA modulator, the traditional elliptical near-field spot becomes more rounded, so it will match better with the optical fiber and is beneficial for raising the coupling efficiency.
Resumo:
A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at bit-error-rate of 10(-1)0 is confirmed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A 100-μm-long electroabsorption modulator monolithically integrated with passive waveguides at the input and output ports is fabricated through ion implantation induced quantum well intermixing, using only a two-step low-pressure metal-organic vapor phase epitaxial process. An InGaAsP/InGaAsP intra-step quantum well is introduced to the active region to improve the modulation properties. In the experiment high modulation speed and high extinction ratio are obtained simultaneously, the electrical-to-optical frequency response (E/O response) without any load termination reaches to 22 GHz, and extinction ration is as high as 16 dB.
Resumo:
A compact and stable three-port optical gate has been successfully fabricated by monolithically integrating asimple photodiode and an electroabsorption modulator. The gate shows an excellent DC logic "and" function with differ-ent load resistors. Its dynamical characteristics without packaging have also been measured. We observed a dynamic extinc-tion ratio of over 7dB with a 950Ω load resistor and a 7mW control light power at 622Mbit/s.
Resumo:
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A novel 1.55-μm spot-size converter integrated electroabsorption modulator was designed with conventional photolithography and chemical wet etching process. A ridge double-core structure was employed for the modulator, and a buried ridge double-core structure was incorporated for the spot-size converter. The passive waveguide was optically combined with a laterally tapered active waveguide to control the mode size. The figure of merit is 4.1667 dB/V(/100 μm) and the beam divergence angles in the horizontal and vertical directions were as small as 11.2 deg. and 13.0 deg., respectively.
Resumo:
An improved butt coupling method is used to fabricate an electroabsorption modulator (EAM) monolithically integrated with a distributed feedback (DFB) laser. The obtained electroabsorption-modulated laser (EML) chip with the traditional shallow ridge exhibits very low threshold current of 12 mA, output power of more than 8 mW, and static extinction ratio of -7 dB at the applied bias voltage from 0.5 to -2.0 V.
Resumo:
国家863计划
Resumo:
A three-node optical time-division multiplexing (OTDM) network is demonstrated that utilizes electroabsorption (EA) modulators as the core elements. Each node is self contained and performs its own clock recovery and synchronization. “Drop and insert” functionality is demonstrated for the first time with an EA modulator by completely removing a 10-Gb/s channel from a 40-Gb/s OTDM data stream. A different 10-Gb/s channel was subsequently inserted into the vacant time slot. Clock recovery is achieved by using an EA modulator in a novel bidirectional configuration. Bit-error-rate (BER) measurements are presented for each of the 10-Gb/s OTDM channels.
Resumo:
A single electroabsorption modulator was used to demultiplex a 10 Gbit/s channel from a 40 Gbit/s OTDM data stream, whilst simultaneously recovering the 10 GHz electrical clock. This was achieved using a new bi-directional operation of the EA modulator, combined with a simple phase-locked loop feedback circuit. Excellent system performance was achieved, indicating that operation up to and beyond 100 Gbit/s is possible using current technology.