970 resultados para damage mechanisms
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
We report the single-shot damage thresholds of MgF2/ZnS onmidirectional reflector for laser pulse durations from 50 A to 900 fs. A coupled dynamic model is applied to study the damage mechanisms, in which we consider not only the electronic excitation of the material, but also the influence of this excitation-induced changes in the complex refractive index of material on the laser pulse itself. The results indicate that this feedback effect plays a very important role during the damage of material. Based on this model, we calculate the threshold fluences and the time-resolved excitation process of the multiplayer. The theoretical calculations agree well with our experimental results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
HfO2 single layers, 800 run high-reflective (HR) coating, and 1064 ran HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO2 single layer is higher than the HfO2-SiO2 HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed. (c) 2007 Optical Society of America.
Resumo:
Ta2O5 films are deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer ( XRD) results. X-ray photoelectron spectroscopy ( XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2O5 film achieves the highest laser induced damage threshold ( LIDT) either at 355 or 1064 nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064 nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.
Resumo:
Single lap joints of woven GFRP composites have been investigated for impact induced damage modes using C-scan, X-ray micro tomography, imaging and finite element (FE) modelling. This has allowed for damage modes to be observed in 3D from macro to micro level-resulting in much better understanding of damage mechanisms and realistic FE modelling.
Resumo:
An intralaminar damage model, based on a continuum damage mechanics approach, is presented to model the damage mechanisms occurring in carbon fibre composite structures incorporating fibre tensile and compressive breakage, matrix tensile and compressive fracture, and shear failure. The damage model, together with interface elements for capturing interlaminar failure, is implemented in a finite element package and used in a detailed finite element model to simulate the response of a stiffened composite panel to low-velocity impact. Contact algorithms and friction between delaminated plies were included, to better simulate the impact event. Analyses were executed on a high performance computer (HPC) cluster to reduce the actual time required for this detailed numerical analysis. Numerical results relating to the various observed interlaminar damage mechanisms, delamination initiation and propagation, as well as the model’s ability to capture post-impact permanent indentation in the panel are discussed. Very good agreement was achieved with experimentally obtained data of energy absorbed and impactor force versus time. The extent of damage predicted around the impact site also corresponded well with the damage detected by non destructive evaluation of the tested panel.
Resumo:
Delamination and matrix cracking are routine damage mechanisms, observed by post-mortem analysis of laminated structures containing geometrical features such as notches or bolts. Current finite element tools cannot explicitly model an intralaminar matrix microcrack, except if the location of the damage is specified a priori. In this work, a meshless technique, the Element-Free Galerkin (EFG) method, is utilized for the first time to simulate delamination (interlaminar) and intralaminar matrix microcracking in composite laminates.
Resumo:
Composite materials are finding increasing use on primary aerostructures to meet demanding performance targets while reducing environmental impact. This paper presents a finite-element-based preliminary optimization methodology for postbuckling stiffened panels, which takes into account damage mechanisms that lead to delamination and subsequent failure by stiffener debonding. A global-local modeling approach is adopted in which the boundary conditions on the local model are extracted directly from the global model. The optimization procedure is based on a genetic algorithm that maximizes damage resistance within the postbuckling regime. This routine is linked to a finite element package and the iterative procedure automated. For a given loading condition, the procedure optimized the stacking sequence of several areas of the panel, leading to an evolved panel that displayed superior damage resistance in comparison with nonoptimized designs.
Resumo:
This paper describes the fractographic analysis of five CFRP post-buckled skin/stringer panels that were tested to failure in compression. The detailed damage mechanisms for skin/stiffener detachment in an undamaged panel were characterised and related to the stress conditions during post-buckling; in particular the sites of peak twist (at buckling nodes) and peak bending moments (at buckling anti-nodes). The initial event was intralaminar splitting of the +45 degrees plies adjacent to the skin/stiffener interface, induced by high twist at a nodeline. This was followed by mode II delamination, parallel to +/- 45 degrees plies and then lengthwise (0 degrees) shear along the stiffener centreline. The presence of defects or damage was found to influence this failure process, leading to a reduction in strength. This research provides an insight into the processes that control post-buckled performance of stiffened panels and suggests that 2D models and element tests do not capture the true physics of skin/stiffener detachment: a full 3D approach is required.
Resumo:
A robust multiscale scheme referred to as micro–macro method has been developed for the prediction of localized damage in fiber reinforced composites and implemented in a finite element framework. The micro–macro method is based on the idea of partial homogenization of a structure. In this method, the microstructural details are included in a small region of interest in the structure and the rest is modeled as a homogeneous continuum. The solution to the microstructural fields is then obtained on solving the two different domains, simultaneously. This method accurately predicts local stress fields in stress concentration regions and is computationally efficient as compared with the solution of a full scale microstructural model. This scheme has been applied to obtain localized damage at high and low stress zones of a V-notched rail shear specimen. The prominent damage mechanisms under shear loading, namely, matrix cracking and interfacial debonding, have been modeled using Mohr–Coulomb plasticity and traction separation law, respectively. The average stress at the notch has been found to be 44% higher than the average stresses away from the notch for a 90 N shear load. This stress rise is a direct outcome of the geometry of the notch.
Resumo:
An intralaminar damage model (IDM), based on continuum damage mechanics, was developed for the simulation of composite structures subjected to damaging loads. This model can capture the complex intralaminar damage mechanisms, accounting for mode interactions, and delaminations. Its development is driven by a requirement for reliable crush simulations to design composite structures with a high specific energy absorption. This IDM was implemented as a user subroutine within the commercial finite element package, Abaqus/Explicit[1]. In this paper, the validation of the IDM is presented using two test cases. Firstly, the IDM is benchmarked against published data for a blunt notched specimen under uniaxial tensile loading, comparing the failure strength as well as showing the damage. Secondly, the crush response of a set of tulip-triggered composite cylinders was obtained experimentally. The crush loading and the associated energy of the specimen is compared with the FE model prediction. These test cases show that the developed IDM is able to capture the structural response with satisfactory accuracy
Resumo:
The design of current composite primary aerostructures, such as fuselage or wing stiffened panels, tends to be conservative due to the susceptibility of the relatively weak skin-stiffener interface. This weakness is due to through-thickness stresses which are exacerbated by deformations due to buckling. This paper presents a finite-elementbased optimization strategy, utilizing a global-local modelling approach, for postbuckling stiffened panels which takes into account damage mechanisms which may lead to delamination and subsequent failure of the panel due to stiffener debonding. A genetic algorithm was linked to a finite element package to automate the iterative procedure and maximize the damage resistance of the panel in postbuckling. For a given loading condition, the procedure optimized the panel’s skin layup leading to a design displaying superior damage resistance compared to non-optimized designs
Resumo:
It was observed in the ‘80s that the radiation damage on biological systems strongly depends on processes occurring at the microscopic level, involving the elementary constituents of biological cells. Since then, lot of attention has been paid to study elementary processes of photo- and ion-chemistry of isolated organic molecule of biological interest. This work fits in this framework and aims to study the radiation damage mechanisms induced by different types of radiations on simple halogenated biomolecules used as radiosensitizers in radiotherapy. The research is focused on the photofragmentation of halogenated pyrimidine molecules (5Br-pyrimidine, 2Br-pyrimidine and 2Cl-pyrimidine) in the VUV range and on the 12C4+ ion-impact fragmentation of the 5Br-uracil and its homogeneous and hydrated clusters. Although halogen substituted pyrimidines have similar structure to the pyrimidine molecule, their photodissociation dynamics is quite different. These targets have been chosen with the purpose of investigating the effect of the specific halogen atom and site of halogenation on the fragmentation dynamics. Theoretical and experimental studies have highlighted that the site of halogenation and the type of halogen atom, lead either to the preferential breaking of the pyrimidinic ring or to the release of halogen/hydrogen radicals. The two processes can subsequently trigger different mechanisms of biological damage. To understand the effect of the environment on the fragmentation dynamic of the single molecule, the ion-induced fragmentation of homogenous and hydrated clusters of 5Br-uracil have been studied and compared to similar studies on the isolated molecule. The results show that the “protective effect” of the environment on the single molecule hold in the homogeneous clusters, but not in the hydrated clusters, where several hydrated fragments have been observed. This indicates that the presence of water molecules can inhibit some fragmentation channels and promote the keto-enol tautomerization, which is very important in the mutagenesis of the DNA.
Resumo:
Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature.
Resumo:
Concrete filled steel tubular (CFST) columns are increasingly used in bridge piers and high-rise buildings due to their excellent axial load bearing capacity. These columns may experience severe damage or failure due to transverse impact of vehicle collisions. In this study, numerical investigation is carried out to evaluate the effect of carbon fibre reinforced polymer (CFRP) strengthening CFST columns under vehicular impact. The CFRP composites damage mechanisms are simulated to account four different failure criteria. The cohesive elements are introduced as interface element to properly simulate the adhesively bonded regime. Simplified vehicle model is also developed to represent real vehicle behaviour. The FE analysis results show that externally bonded CFRP composites improve the impact resistance capacity compared to bare CFST column.