994 resultados para cumulative error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies have evaluated the reliability of lifetime sun exposure estimated from inquiring about the number of hours people spent outdoors in a given period on a typical weekday or weekend day (the time-based approach). Some investigations have suggested that women have a particularly difficult task in estimating time outdoors in adulthood due to their family and occupational roles. We hypothesized that people might gain additional memory cues and estimate lifetime hours spent outdoors more reliably if asked about time spent outdoors according to specific activities (an activity-based approach). Using self-administered, mailed questionnaires, test-retest responses to time-based and to activity-based approaches were evaluated in 124 volunteer radiologic technologist participants from the United States: 64 females and 60 males 48 to 80 years of age. Intraclass correlation coefficients (ICC) were used to evaluate the test-retest reliability of average number of hours spent outdoors in the summer estimated for each approach. We tested the differences between the two ICCs, corresponding to each approach, using a t test with the variance of the difference estimated by the jackknife method. During childhood and adolescence, the two approaches gave similar ICCs for average numbers of hours spent outdoors in the summer. By contrast, compared with the time-based approach, the activity-based approach showed significantly higher ICCs during adult ages (0.69 versus 0.43, P = 0.003) and over the lifetime (0.69 versus 0.52, P = 0.05); the higher ICCs for the activity-based questionnaire were primarily derived from the results for females. Research is needed to further improve the activity-based questionnaire approach for long-term sun exposure assessment. (Cancer Epidemiol Biomarkers Prev 2009;18(2):464–71)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel combinatory orthogonal frequency division multiplexing (PC-OFDM yields lower maximum peak-to-average power ratio (PAR), high bandwidth efficiency and lower bit error rate (BER) on Gaussian channels compared to OFDM systems. However, PC-OFDM does not improve the statistics of PAR significantly. In this chapter, the use of a set of fixed permutations to improve the statistics of the PAR of a PC-OFDM signal is presented. For this technique, interleavers are used to produce K-1 permuted sequences from the same information sequence. The sequence with the lowest PAR, among K sequences is chosen for the transmission. The PAR of a PC-OFDM signal can be further reduced by 3-4 dB by this technique. Mathematical expressions for the complementary cumulative density function (CCDF)of PAR of PC-OFDM signal and interleaved PC-OFDM signal are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As order dependencies between process tasks can get complex, it is easy to make mistakes in process model design, especially behavioral ones such as deadlocks. Notions such as soundness formalize behavioral errors and tools exist that can identify such errors. However these tools do not provide assistance with the correction of the process models. Error correction can be very challenging as the intentions of the process modeler are not known and there may be many ways in which an error can be corrected. We present a novel technique for automatic error correction in process models based on simulated annealing. Via this technique a number of process model alternatives are identified that resolve one or more errors in the original model. The technique is implemented and validated on a sample of industrial process models. The tests show that at least one sound solution can be found for each input model and that the response times are short.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gay community media functions as a system with three nodes, in which the flows of information and capital theoretically benefit all parties: the gay community gains a sense of cohesion and citizenship through media; the gay media outlets profit from advertisers’ capital; and advertisers recoup their investments in lucrative ‘pink dollar’ revenue. But if a necessary corollary of all communication systems is error or noise, where—and what—are the errors in this system? In this paper we argue that the ‘error’ in the gay media system is Queerness, and that the gay media system ejects (in a process of Kristevan abjection) these Queer identities in order to function successfully. We examine the ways in which Queer identities are excluded from representation in such media through a discourse and content analysis of The Sydney Star Observer (Australia’s largest gay and lesbian paper). First, we analyse the way Queer bodies are excluded from the discourses that construct and reinforce both the ideal gay male body and the notions of homosexual essence required for that body to be meaningful. We then argue that abject Queerness returns in the SSO’s discourses of public health through the conspicuous absence of the AIDS-inflicted body (which we read as the epitome of the abject Queer), since this absence paradoxically conjures up a trace of that which the system tries to expel. We conclude by arguing that because the ‘Queer error’ is integral to the SSO, gay community media should practise a politics of Queer inclusion rather than exclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error.