995 resultados para classical integral transforms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Снежана Христова, Кремена Стефанова, Лозанка Тренкова - В статията се изучават някои интегрални неравенства, които съдържат макси-мума на неизвестната функция на една променлива. Разглежданите неравенства са обобщения на класическото неравенство на Бихари. Значимостта на тези интегрални неравенства се дълже на широкото им приложение при качественото изследванене на различни свойства на решенията на диференциални уравнения с “максимум” и е илюстрирано с някои директни приложения.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Кремена В. Стефанова - В тази статия са разрешени някои нелинейни интегрални неравенства, които включват максимума на неизвестната функция на две променливи. Разгледаните неравенства представляват обобщения на класическото неравенство на Гронуол-Белман. Значението на тези интегрални неравенства се определя от широките им приложения в качествените изследвания на частните диференциални уравнения с “максимуми” и е илюстрирано чрез някои директни приложения.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 35R11, 42A38, 26A33, 33E12

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: Texture enhancement is an important component of image processing, with extensive application in science and engineering. The quality of medical images, quantified using the texture of the images, plays a significant role in the routine diagnosis performed by medical practitioners. Previously, image texture enhancement was performed using classical integral order differential mask operators. Recently, first order fractional differential operators were implemented to enhance images. Experiments conclude that the use of the fractional differential not only maintains the low frequency contour features in the smooth areas of the image, but also nonlinearly enhances edges and textures corresponding to high-frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we applied the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other fractional differential operators, our new algorithms provide higher signal to noise values, which leads to superior image quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the problem of a cylindrical crack located in a functionally graded material (FGM) interlayer between two coaxial elastic dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. The shear modulus and the mass density of the FGM interlayer are assumed to vary continuously between those of the two coaxial cylinders. This mixed boundary value problem is first reduced to a singular integral equation with a Cauchy type kernel in the Laplace domain by applying Laplace and Fourier integral transforms. The singular integral equation is then solved numerically and the dynamic stress intensity factor (DSIF) is also obtained by a numerical Laplace inversion technique. The DSIF is found to rise rapidly to a peak and then reduce and tend to the static value almost without oscillation. The influences of the crack location, the FGM interlayer thickness and the relative magnitudes of the adjoining material properties are examined. It is found among others that, by increasing the FGM gradient, the DSIF can be greatly reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces art assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density,function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically, and using a numerical Laplace inversion technique, the dynamic stress intensity factors art obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The three-dimensional transient wave response problem is presented for an infinite elastic medium weakened by a plane crack of infinite length and finite width. Tractions are applied suddenly to the crack, which simulates the case of impact loading. The integral transforms are utilized to reduce the problem to a standard Fredholm integral equation in the Laplace transform variable and sequentially invert the Laplace transforms of the stress components by numerical inversion method. The dynamic mode I stress intensity factors at the crack tip are obtained and some numerical results are presented in graphical form.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modelos de evolução populacional são há muito tempo assunto de grande relevância, principalmente quando a população de estudo é composta por vetores de doenças. Tal importância se deve ao fato de existirem milhares de doenças que são propagadas por espécies específicas e conhecer como tais populações se comportam é vital quando pretende-se criar políticas públicas para controlar a sua proliferação. Este trabalho descreve um problema de evolução populacional difusivo com armadilhas locais e tempo de reprodução atrasado, o problema direto descreve a densidade de uma população uma vez conhecidos os parâmetros do modelo onde sua solução é obtida por meio da técnica de transformada integral generalizada, uma técnica numérico-analítica. Porém a solução do problema direto, por si só, não permite a simulação computacional de uma população em uma aplicação prática, uma vez que os parâmetros do modelo variam de população para população e precisam, portanto, ter seus valores conhecidos. Com o objetivo de possibilitar esta caracterização, o presente trabalho propõe a formulação e solução do problema inverso, estimando os parâmetros do modelo a partir de dados da população utilizando para tal tarefa dois métodos Bayesianos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the energy for the ground state of helium and a few helium-like ions (Z=1-6) is computed variationally by using a Hylleraas-like wavefunction. A four-parameters wavefunction, satisfying boundary conditions for coalescence points, is combined with a Hylleraas-like basis set which explicitly incorporates r12 interelectronic distance. The main contribution of this work is the introduction of modified correlation terms leading to the definition of integral transforms which provide the calculation of expectation value of energy to be done analytically over single-particle coordinates instead of Hylleraas coordinates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exercises and solutions in PDF