857 resultados para border spaces
Resumo:
Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.
Resumo:
Background: We aimed to compare plasma concentrations of carbon dioxide (CO(2)) in dogs that underwent intra- and preperitoneal CO(2) insufflation. Materials and Methods: Thirty dogs were studied. Ten formed a control group, 10 underwent intraperitoneal CO(2) insufflation, and 10 underwent preperitoneal CO(2) insufflation. General anesthesia with controlled ventilation was standardized for all dogs. After stabilizing the anesthesia, blood samples were collected at predetermined times and were sent for immediate gasometric analysis. Analysis of variance was used for comparing variables. Results: The plasma CO(2) concentration in the intraperitoneal insufflation group increased significantly more than in the preperitoneal insufflation group and was significantly greater than in the control group (P < 0.05). The pH values in the intraperitoneal group were lower than in the preperitoneal group (P < 0.05). Conclusion: The data from this study suggest that a greater plasma concentration of CO(2) is achieved by insufflation at constant pressure into the intraperitoneal space than into the preperitoneal space.
Resumo:
Quantum field theories (QFT's) on noncommutative spacetimes are currently under intensive study. Usually such theories have world sheet noncommutativity. In the present work, instead, we study QFT's with commutative world sheet and noncommutative target space. Such noncommutativity can be interpreted in terms of twisted statistics and is related to earlier work of Oeckl [R. Oeckl, Commun. Math. Phys. 217, 451 (2001)], and others [A. P. Balachandran, G. Mangano, A. Pinzul, and S. Vaidya, Int. J. Mod. Phys. A 21, 3111 (2006); A. P. Balachandran, A. Pinzul, and B. A. Qureshi, Phys. Lett. B 634,434 (2006); A.P. Balachandran, A. Pinzul, B.A. Qureshi, and S. Vaidya, arXiv:hep-th/0608138; A.P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B.A. Qureshi, and S. Vaidya, Phys. Rev. D 75, 045009 (2007); A. Pinzul, Int. J. Mod. Phys. A 20, 6268 (2005); G. Fiore and J. Wess, Phys. Rev. D 75, 105022 (2007); Y. Sasai and N. Sasakura, Prog. Theor. Phys. 118, 785 (2007)]. The twisted spectra of their free Hamiltonians has been found earlier by Carmona et al. [J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, Phys. Lett. B 565, 222 (2003); J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, J. High Energy Phys. 03 (2003) 058]. We review their derivation and then compute the partition function of one such typical theory. It leads to a deformed blackbody spectrum, which is analyzed in detail. The difference between the usual and the deformed blackbody spectrum appears in the region of high frequencies. Therefore we expect that the deformed blackbody radiation may potentially be used to compute a Greisen-Zatsepin-Kuzmin cutoff which will depend on the noncommutative parameter theta.
Resumo:
One important issue implied by the finite nature of real-world networks regards the identification of their more external (border) and internal nodes. The present work proposes a formal and objective definition of these properties, founded on the recently introduced concept of node diversity. It is shown that this feature does not exhibit any relevant correlation with several well-established complex networks measurements. A methodology for the identification of the borders of complex networks is described and illustrated with respect to theoretical (geographical and knitted networks) as well as real-world networks (urban and word association networks), yielding interesting results and insights in both cases.
Resumo:
This paper is a continuation and a complement of our previous work on isomorphic classification of some spaces of compact operators. We improve the main result concerning extensions of the classical isomorphic classification of the Banach spaces of continuous functions on ordinals. As an application, fixing an ordinal a and denoting by X(xi), omega(alpha) <= xi < omega(alpha+1), the Banach space of all X-valued continuous functions defined in the interval of ordinals [0,xi] and equipped with the supremum, we provide complete isomorphic classifications of some Banach spaces K(X(xi),Y(eta)) of compact operators from X(xi) to Y(eta), eta >= omega. It is relatively consistent with ZFC (Zermelo-Fraenkel set theory with the axiom of choice) that these results include the following cases: 1.X* contains no copy of c(0) and has the Mazur property, and Y = c(0)(J) for every set J. 2. X = c(0)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < infinity. 3. X = l(p)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < p < infinity.
Resumo:
We prove an extension of the classical isomorphic classification of Banach spaces of continuous functions on ordinals. As a consequence, we give complete isomorphic classifications of some Banach spaces K(X,Y(n)), eta >= omega, of compact operators from X to Y(eta), the space of all continuous Y-valued functions defined in the interval of ordinals [1, eta] and equipped with the supremum norm. In particular, under the Continuum Hypothesis, we extend a recent result of C. Samuel by classifying, up to isomorphism, the spaces K(X(xi), c(0)(Gamma)(eta)), where omega <= xi < omega(1,) eta >= omega, Gamma is a countable set, X contains no complemented copy of l(1), X* has the Mazur property and the density character of X** is less than or equal to N(1).
Resumo:
This paper concerns the spaces of compact operators kappa(E,F), where E and F are Banach spaces C([1, xi], X) of all continuous X-valued functions defined on the interval of ordinals [1, xi] and equipped with the supremun norm. We provide sufficient conditions on X, Y, alpha, beta, xi and eta, with omega <= alpha <= beta < omega 1 for the following equivalence: (a) kappa(C([1, xi], X), C([1, alpha], Y)) is isomorphic to kappa(C([1,eta], X), C([1, beta], Y)), (b) beta < alpha(omega). In this way, we unify and extend results due to Bessaga and Pelczynski (1960) and C. Samuel (2009). Our result covers the case of the classical spaces X = l(p) and Y = l(q) with 1 < p, q < infinity.
Resumo:
A group G is representable in a Banach space X if G is isomorphic to the group of isometrics on X in some equivalent norm. We prove that a countable group G is representable in a separable real Banach space X in several general cases, including when G similar or equal to {-1,1} x H, H finite and dim X >= vertical bar H vertical bar or when G contains a normal subgroup with two elements and X is of the form c(0)(Y) or l(p)(Y), 1 <= p < +infinity. This is a consequence of a result inspired by methods of S. Bellenot (1986) and stating that under rather general conditions on a separable real Banach space X and a countable bounded group G of isomorphisms on X containing -Id, there exists an equivalent norm on X for which G is equal to the group of isometrics on X. We also extend methods of K. Jarosz (1988) to prove that any complex Banach space of dimension at least 2 may be renormed with an equivalent complex norm to admit only trivial real isometries, and that any complexification of a Banach space may be renormed with an equivalent complex norm to admit only trivial and conjugation real isometrics. It follows that every real Banach space of dimension at least 4 and with a complex structure may be renormed to admit exactly two complex structures up to isometry, and that every real Cartesian square may be renormed to admit a unique complex structure up to isometry.
Resumo:
We study polar actions with horizontal sections on the total space of certain principal bundles G/K -> G/H with base a symmetric space of compact type. We classify such actions up to orbit equivalence in many cases. In particular, we exhibit examples of hyperpolar actions with cohomogeneity greater than one on locally irreducible homogeneous spaces with nonnegative curvature which are not homeomorphic to symmetric spaces.
Resumo:
Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q)
Resumo:
We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of the three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to ‘pack’ the phase space with circular resonances.
Resumo:
This paper is devoted to the study of the class of continuous and bounded functions f : [0, infinity] -> X for which exists omega > 0 such that lim(t ->infinity) (f (t + omega) - f (t)) = 0 (in the sequel called S-asymptotically omega-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically omega-periodic functions. We also study the existence of S-asymptotically omega-periodic mild solutions of the first-order abstract Cauchy problem in Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Drosophila antonietae and Drosophila gouveai are allopatric, cactophilic, cryptic and endemic of South America species, which aedeagus morphology is considered the main diagnostic character. In this work, single close populations from the edge distributions of each species, located in an ""introgressive corridor"", were analyzed regarding temporal isozenzymatic genetic variability. Isocitrate dehydrogenase (Idh) appeared as a diagnostic locus between D. antonieate and D. gouveai because each population was fixed for different alleles. Moreover, several polymorphic loci showed accentuated divergence in the allele frequency, as evidenced by Nei`s l(0.3188) and D (1.1432), and also by Reynolds` genetic distance and identity (1.3207 and 0.7331, respectively). Our results showed that, in spite of the very similar external morphology, related evolutionary histories, close distributions, and events of introgression in the studied area, these cryptic species have high allozymatic differentiation, and this is discussed here. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work is concerned with implicit second order abstract differential equations with nonlocal conditions. Assuming that the involved operators satisfy sonic compactness properties, we establish the existence of local mild solutions, the existence of global mild solutions and the existence of asymptotically almost periodic solutions.