1000 resultados para bivariate processes
Resumo:
A bivariate semi-Pareto distribution is introduced and characterized using geometric minimization. Autoregressive minification models for bivariate random vectors with bivariate semi-Pareto and bivariate Pareto distributions are also discussed. Multivariate generalizations of the distributions and the processes are briefly indicated.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60G70.
Resumo:
This paper addresses the issue of estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads us to take into account the covariance between the mean and the variance and the variance of the variance, that is, the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely, the QMLE, the GMM and the M-estimation. The ususal univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular, the importance of skewness.
Resumo:
Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.
Resumo:
This study uses a Granger causality time series modeling approach to quantitatively diagnose the feedback of daily sea surface temperatures (SSTs) on daily values of the North Atlantic Oscillation (NAO) as simulated by a realistic coupled general circulation model (GCM). Bivariate vector autoregressive time series models are carefully fitted to daily wintertime SST and NAO time series produced by a 50-yr simulation of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). The approach demonstrates that there is a small yet statistically significant feedback of SSTs oil the NAO. The SST tripole index is found to provide additional predictive information for the NAO than that available by using only past values of NAO-the SST tripole is Granger causal for the NAO. Careful examination of local SSTs reveals that much of this effect is due to the effect of SSTs in the region of the Gulf Steam, especially south of Cape Hatteras. The effect of SSTs on NAO is responsible for the slower-than-exponential decay in lag-autocorrelations of NAO notable at lags longer than 10 days. The persistence induced in daily NAO by SSTs causes long-term means of NAO to have more variance than expected from averaging NAO noise if there is no feedback of the ocean on the atmosphere. There are greater long-term trends in NAO than can be expected from aggregating just short-term atmospheric noise, and NAO is potentially predictable provided that future SSTs are known. For example, there is about 10%-30% more variance in seasonal wintertime means of NAO and almost 70% more variance in annual means of NAO due to SST effects than one would expect if NAO were a purely atmospheric process.
Resumo:
The processes that govern the predictability of decadal variations in the North Atlantic meridional overturning circulation (MOC) are investigated in a long control simulation of the ECHO-G coupled atmosphere–ocean model. We elucidate the roles of local stochastic forcing by the atmosphere, and other potential ocean processes, and use our results to build a predictive regression model. The primary influence on MOC variability is found to come from air–sea heat fluxes over the Eastern Labrador Sea. The maximum correlation between such anomalies and the variations in the MOC occurs at a lead time of 2 years, but we demonstrate that the MOC integrates the heat flux variations over a period of 10 years. The corresponding univariate regression model accounts for 74.5% of the interannual variability in the MOC (after the Ekman component has been removed). Dense anomalies to the south of the Greenland-Scotland ridge are also shown to precede the overturning variations by 4–6 years, and provide a second predictor. With the inclusion of this second predictor the resulting regression model explains 82.8% of the total variance of the MOC. This final bivariate model is also tested during large rapid decadal overturning events. The sign of the rapid change is always well represented by the bivariate model, but the magnitude is usually underestimated, suggesting that other processes are also important for these large rapid decadal changes in the MOC.
Resumo:
In this article we introduce a three-parameter extension of the bivariate exponential-geometric (BEG) law (Kozubowski and Panorska, 2005) [4]. We refer to this new distribution as the bivariate gamma-geometric (BGG) law. A bivariate random vector (X, N) follows the BGG law if N has geometric distribution and X may be represented (in law) as a sum of N independent and identically distributed gamma variables, where these variables are independent of N. Statistical properties such as moment generation and characteristic functions, moments and a variance-covariance matrix are provided. The marginal and conditional laws are also studied. We show that BBG distribution is infinitely divisible, just as the BEG model is. Further, we provide alternative representations for the BGG distribution and show that it enjoys a geometric stability property. Maximum likelihood estimation and inference are discussed and a reparametrization is proposed in order to obtain orthogonality of the parameters. We present an application to a real data set where our model provides a better fit than the BEG model. Our bivariate distribution induces a bivariate Levy process with correlated gamma and negative binomial processes, which extends the bivariate Levy motion proposed by Kozubowski et al. (2008) [6]. The marginals of our Levy motion are a mixture of gamma and negative binomial processes and we named it BMixGNB motion. Basic properties such as stochastic self-similarity and the covariance matrix of the process are presented. The bivariate distribution at fixed time of our BMixGNB process is also studied and some results are derived, including a discussion about maximum likelihood estimation and inference. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08