999 resultados para Water potential


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé : Les ions hydronium (H3O + ) sont formés, à temps courts, dans les grappes ou le long des trajectoires de la radiolyse de l'eau par des rayonnements ionisants à faible transfert d’énergie linéaire (TEL) ou à TEL élevé. Cette formation in situ de H3O + rend la région des grappes/trajectoires du rayonnement temporairement plus acide que le milieu environnant. Bien que des preuves expérimentales de l’acidité d’une grappe aient déjà été signalées, il n'y a que des informations fragmentaires quant à son ampleur et sa dépendance en temps. Dans ce travail, nous déterminons les concentrations en H3O + et les valeurs de pH correspondantes en fonction du temps à partir des rendements de H3O + calculés à l’aide de simulations Monte Carlo de la chimie intervenant dans les trajectoires. Quatre ions incidents de différents TEL ont été sélectionnés et deux modèles de grappe/trajectoire ont été utilisés : 1) un modèle de grappe isolée "sphérique" (faible TEL) et 2) un modèle de trajectoire "cylindrique" (TEL élevé). Dans tous les cas étudiés, un effet de pH acide brusque transitoire, que nous appelons un effet de "pic acide", est observé immédiatement après l’irradiation. Cet effet ne semble pas avoir été exploré dans l'eau ou un milieu cellulaire soumis à un rayonnement ionisant, en particulier à haut TEL. À cet égard, ce travail soulève des questions sur les implications possibles de cet effet en radiobiologie, dont certaines sont évoquées brièvement. Nos calculs ont ensuite été étendus à l’étude de l'influence de la température, de 25 à 350 °C, sur la formation in situ d’ions H3O + et l’effet de pic acide qui intervient à temps courts lors de la radiolyse de l’eau à faible TEL. Les résultats montrent une augmentation marquée de la réponse de pic acide à hautes températures. Comme de nombreux processus intervenant dans le cœur d’un réacteur nucléaire refroidi à l'eau dépendent de façon critique du pH, la question ici est de savoir si ces fortes variations d’acidité, même si elles sont hautement localisées et transitoires, contribuent à la corrosion et l’endommagement des matériaux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An estimate of the irrigation potential over and above the existing utilization was made based on the ground water potential in the Vedavati river basin. The estimate is based on assumed crops and cropping patterns as per existing practice in the various taluks of the basin. Irrigation potential was estimated talukwise based on the available ground water potential identified from the simulation study. It is estimated that 84,100 hectares of additional land can be brought under irrigation from ground water in the entire basin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both delta O-18 profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0-115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The physiological response of plants to water deficits are known to vary according to the conditions of application of drought stress and the rate of development of leaf water deficits. At the whole plant level the effect of the water shess is usually perceived as a decrease in photosynthesis and growth, and is associated with alterations in C and N metabolism (McDonald and Davies, 1996). The decrease in water potential affects transpiration and hence xylem transport of nitrate or reduced N into growing regions. The response of the photo-synthetic apparatus either to water stress or rehydration seems to be dependent "on leaf age (O'Neill, 1983; Wolfe et al., 1988). Degradation of both thylakoid and stromal N-containing compounds can occur in response to water stress, recovery from which may pequire more than a week (Chaves, 1991).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The major focus of this dissertation was to explain terroir effects that impact wine varietal character and to elucidate potential determinants of terroir by testing vine water status (VWS) as the major factor of the terroir effect. It was hypothesized that consistent water status zones could be identified within vineyard sites, and, that differences in vine performance, fruit composition and wine sensory attributes could be related to VWS. To test this hypothesis, ten commercial Riesling vineyards representative of each Vintners Quality Alliance sub-appellation were selected. Vineyards were delineated using global positioning systems and 75 to 80 sentinel vines per vineyard were geo-referenced for data collection. During the 2005 to 2007 growing seasons, VWS measurements [midday leaf water potential ('l')] were collected from a subset of these sentinel vines. Data were collected on soil texture and composition, soil moisture, vine performance (yield components, vine size) and fruit composition. These variables were mapped using global information system (GIS) software and relationships between them were elucidated. Vines were categorized into "low" and "high" water status regions within each vineyard block and replicate wines were made from each. Many geospatial patterns and relationships were spatially and temporally stable within vineyards. Leaf'l' was temporally stable within vineyards despite different weather conditions during each growing season. Generally, spatial relationships between 'l', soil moisture, vine size, berry weight and yield were stable from year to year. Leaf", impacted fruit composition in several vineyards. Through sorting tasks and multidimensional scaling, wines of similar VWS had similar sensory properties. Descriptive analysis further indicated that VWS impacted wine sensory profiles, with similar attributes being different for wines from different water status zones. Vineyard designation had an effect on wine profiles, with certain sensory and chemical attributes being associated from different subappellations. However, wines were generally grouped in terms of their regional designation ('Lakeshore', 'Bench', 'Plains') within the Niagara Peninsula. Through multivariate analyses, specific sensory attributes, viticulture and chemical variables were associated with wines of different VWS. Vine water status was a major contributor to the terroir effect, as it had a major impact on vine size, berry weight and wine sensory characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.