932 resultados para Underwater
Resumo:
Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.
Resumo:
In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.
Resumo:
An autonomous underwater vehicle (AUV) is expected to operate in an ocean in the presence of poorly known disturbance forces and moments. The uncertainties of the environment makes it difficult to apply open-loop control scheme for the motion planning of the vehicle. The objective of this paper is to develop a robust feedback trajectory tracking control scheme for an AUV that can track a prescribed trajectory amidst such disturbances. We solve a general problem of feedback trajectory tracking of an AUV in SE(3). The feedback control scheme is derived using Lyapunov-type analysis. The results obtained from numerical simulations confirm the asymptotic tracking properties of the feedback control law. We apply the feedback control scheme to different mission scenarios, with the disturbances being initial errors in the state of the AUV.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.
Resumo:
-
Resumo:
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
Resumo:
This paper is concerned with the design and implementation of control strategies onto a test-bed vehicle with six degrees-of-freedom. We design our trajectories to be efficient in time and in power consumption. Moreover, we also consider cases when actuator failure can arise and discuss alternate control strategies in this situation. Our calculations are supplemented by experimental results.
Resumo:
This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.
Resumo:
This paper discusses control strategies adapted for practical implementation and efficient motion of underwater vehicles. These trajectories are piecewise constant thrust arcs with few actuator switchings. We provide the numerical algorithm which computes the time efficient trajectories parameterized by the switching times. We discuss both the theoretical analysis and experimental implementation results.
Resumo:
This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.
Resumo:
From Pontryagin’s Maximum Principle to the Duke Kahanamoku Aquatic Complex; we develop the theory and generate implementable time efficient trajectories for a test-bed autonomous underwater vehicle (AUV). This paper is the beginning of the journey from theory to implementation. We begin by considering pure motion trajectories and move into a rectangular trajectory which is a concatenation of pure surge and pure sway. These trajectories are tested using our numerical model and demonstrated by our AUV in the pool. In this paper we demonstrate that the above motions are realizable through our method, and we gain confidence in our numerical model. We conclude that using our current techniques, implementation of time efficient trajectories is likely to succeed.
Resumo:
In this paper, we are concerned with the practical implementation of time optimal numerical techniques on underwater vehicles. We briefly introduce the model of underwater vehicle we consider and present the parameters for the test bed ODIN (Omni-Directional Intelligent Navigator). Then we explain the numerical method used to obtain time optimal trajectories with a structure suitable for the implementation. We follow this with a discussion on the modifications to be made considering the characteristics of ODIN. Finally, we illustrate our computations with some experimental results.
Resumo:
Ocean processes are dynamic, complex, and occur on multiple spatial and temporal scales. To obtain a synoptic view of such processes, ocean scientists collect data over long time periods. Historically, measurements were continually provided by fixed sensors, e.g., moorings, or gathered from ships. Recently, an increase in the utilization of autonomous underwater vehicles has enabled a more dynamic data acquisition approach. However, we still do not utilize the full capabilities of these vehicles. Here we present algorithms that produce persistent monitoring missions for underwater vehicles by balancing path following accuracy and sampling resolution for a given region of interest, which addresses a pressing need among ocean scientists to efficiently and effectively collect high-value data. More specifically, this paper proposes a path planning algorithm and a speed control algorithm for underwater gliders, which together give informative trajectories for the glider to persistently monitor a patch of ocean. We optimize a cost function that blends two competing factors: maximize the information value along the path, while minimizing deviation from the planned path due to ocean currents. Speed is controlled along the planned path by adjusting the pitch angle of the underwater glider, so that higher resolution samples are collected in areas of higher information value. The resulting paths are closed circuits that can be repeatedly traversed to collect long-term ocean data in dynamic environments. The algorithms were tested during sea trials on an underwater glider operating off the coast of southern California, as well as in Monterey Bay, California. The experimental results show significant improvements in data resolution and path reliability compared to previously executed sampling paths used in the respective regions.