972 resultados para ULLMAN WEIGHT FUNCTION
Resumo:
应用半权函数法求解双材料界面裂纹的应力强度因子,得到以半权函数对参考位移与应力加权积分的形式表示的应力强度因子.针对特征值为复数λ的双材料界面裂纹裂尖应力和位移场,设置与之对应特征值为-λ的位移函数,即半权函数.半权函数的应力函数满足平衡方程,应力应变关系,界面的连续条件以及在裂纹面上面力为0;半权函数与裂纹体的几何尺寸无关,对边界条件没有要求.由功的互等定理得到应力强度因子K_Ⅰ和K_Ⅱ的积分形式表达式.本文计算了多种情况下界面裂纹应力强度因子的算例,与文献结果符合得很好.由于裂尖应力的振荡奇异性已经在积分中避免,只需考虑绕裂尖远场的任意路径上位移和应力,即使采用该路径上较粗糙的参考解也可以得到较精确的结果.
Resumo:
为了使水下机器人(AUV,autonomous underwater vehicle)在多环节不确定条件下满足水下作业时动力定位的控制精度要求,深入研究了混合灵敏度鲁棒控制中各加权函数的选取原则后,设计了基于混合灵敏度的 AUV 鲁棒控制器。通过 AUV 半物理仿真平台上的动力定位试验和控制算法对比试验,证明了所设计的鲁棒控制器对于水下机器人系统的外界扰动和参数变化不确定性具有良好的抑制作用,控制效果令人鼓舞。
Resumo:
To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm to be able to find low-cost paths that satisfy given Quality-of-Service (QoS) constraints. However, the problem of constrained shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem, and present a fast algorithm to find a near-optimal solution. This algorithm, called DCCR (for Delay-Cost-Constrained Routing), is a variant of the k-shortest path algorithm. DCCR uses a new adaptive path weight function together with an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal solution in a very short time. Furthermore, we use the method proposed by Blokh and Gutin to further reduce the search space by using a tighter bound on path cost. This makes our algorithm more accurate and even faster. We call this improved algorithm SSR+DCCR (for Search Space Reduction+DCCR). Through extensive simulations, we confirm that SSR+DCCR performs very well compared to the optimal but very expensive solution.
Resumo:
Many deterministic models with hysteresis have been developed in the areas of economics, finance, terrestrial hydrology and biology. These models lack any stochastic element which can often have a strong effect in these areas. In this work stochastically driven closed loop systems with hysteresis type memory are studied. This type of system is presented as a possible stochastic counterpart to deterministic models in the areas of economics, finance, terrestrial hydrology and biology. Some price dynamics models are presented as a motivation for the development of this type of model. Numerical schemes for solving this class of stochastic differential equation are developed in order to examine the prototype models presented. As a means of further testing the developed numerical schemes, numerical examination is made of the behaviour near equilibrium of coupled ordinary differential equations where the time derivative of the Preisach operator is included in one of the equations. A model of two phenotype bacteria is also presented. This model is examined to explore memory effects and related hysteresis effects in the area of biology. The memory effects found in this model are similar to that found in the non-ideal relay. This non-ideal relay type behaviour is used to model a colony of bacteria with multiple switching thresholds. This model contains a Preisach type memory with a variable Preisach weight function. Shown numerically for this multi-threshold model is a pattern formation for the distribution of the phenotypes among the available thresholds.
Resumo:
In this work we revisit the problem of the hedging of contingent claim using mean-square criterion. We prove that in incomplete market, some probability measure can be identified so that becomes -martingale under .This is in fact a new proposition on the martingale representation theorem. The new results also identify a weight function that serves to be an approximation to the Radon-Nikodým derivative of the unique neutral martingale measure.
Resumo:
In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.
Resumo:
In this paper the class of continuous bivariate distributions that has form-invariant weighted distribution with weight function w(x1, x2) ¼ xa1 1 xa2 2 is identified. It is shown that the class includes some well known bivariate models. Bayesian inference on the parameters of the class is considered and it is shown that there exist natural conjugate priors for the parameters
Resumo:
In this work, we present a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type s(x)y"n(x) + t(x)y'n(x) - lnyn(x) = 0 and show that all the three classical orthogonal polynomial families as well as three finite orthogonal polynomial families, extracted from this equation, can be identified as special cases of this derived polynomial sequence. Some general properties of this sequence are also given.
Resumo:
Restarting automata are a restricted model of computation that was introduced by Jancar et.al. to model the so-called analysis by reduction. A computation of a restarting automaton consists of a sequence of cycles such that in each cycle the automaton performs exactly one rewrite step, which replaces a small part of the tape content by another, even shorter word. Thus, each language accepted by a restarting automaton belongs to the complexity class $CSL cap NP$. Here we consider a natural generalization of this model, called shrinking restarting automaton, where we do no longer insist on the requirement that each rewrite step decreases the length of the tape content. Instead we require that there exists a weight function such that each rewrite step decreases the weight of the tape content with respect to that function. The language accepted by such an automaton still belongs to the complexity class $CSL cap NP$. While it is still unknown whether the two most general types of one-way restarting automata, the RWW-automaton and the RRWW-automaton, differ in their expressive power, we will see that the classes of languages accepted by the shrinking RWW-automaton and the shrinking RRWW-automaton coincide. As a consequence of our proof, it turns out that there exists a reduction by morphisms from the language class $cL(RRWW)$ to the class $cL(RWW)$. Further, we will see that the shrinking restarting automaton is a rather robust model of computation. Finally, we will relate shrinking RRWW-automata to finite-change automata. This will lead to some new insights into the relationships between the classes of languages characterized by (shrinking) restarting automata and some well-known time and space complexity classes.
Resumo:
In a previous paper we have determined a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type σ(x)y"n(x)+τ(x)y'n(x)-λnyn(x)=0. In this paper, we give another such formula which enables us to present a generic formula for the values of monic classical orthogonal polynomials at their boundary points of definition.
Resumo:
The total energy of molecule in terms of 'fuzzy atoms' presented as sum of one- and two-atomic energy components is described. The divisions of three-dimensional physical space into atomic regions exhibit continuous transition from one to another. The energy components are on chemical energy scale according to proper definitions. The Becke's integration scheme and weight function determines realization of method which permits effective numerical integrations
Resumo:
Adaptive methods which “equidistribute” a given positive weight function are now used fairly widely for selecting discrete meshes. The disadvantage of such schemes is that the resulting mesh may not be smoothly varying. In this paper a technique is developed for equidistributing a function subject to constraints on the ratios of adjacent steps in the mesh. Given a weight function $f \geqq 0$ on an interval $[a,b]$ and constants $c$ and $K$, the method produces a mesh with points $x_0 = a,x_{j + 1} = x_j + h_j ,j = 0,1, \cdots ,n - 1$ and $x_n = b$ such that\[ \int_{xj}^{x_{j + 1} } {f \leqq c\quad {\text{and}}\quad \frac{1} {K}} \leqq \frac{{h_{j + 1} }} {{h_j }} \leqq K\quad {\text{for}}\, j = 0,1, \cdots ,n - 1 . \] A theoretical analysis of the procedure is presented, and numerical algorithms for implementing the method are given. Examples show that the procedure is effective in practice. Other types of constraints on equidistributing meshes are also discussed. The principal application of the procedure is to the solution of boundary value problems, where the weight function is generally some error indicator, and accuracy and convergence properties may depend on the smoothness of the mesh. Other practical applications include the regrading of statistical data.
Resumo:
Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Szego polynomials with respect to the weight function w(theta) = e(eta theta)[sin(theta/2)](2 lambda), where eta, lambda is an element of R and lambda > -1/2 are considered. Many of the basic relations associated with these polynomials are given explicitly. Two sequences of para-orthogonal polynomials with explicit relations are also given.
Resumo:
Coupled intersubband plasmon-phonon modes are studied in a multisubband parabolic quantum wire at room temperatures. These modes are found by calculating the spectral weight function which is related to the inelastic Raman spectra. We use a 13 subband model. The plasmon-phonon coupling strongly modifies the dispersion relation of the intersubband modes in the vicinity of the optical phonon frequency omega(LO). Extra modes show up as a result of the electron-phonon interaction. We carefully study the density and temperature dependence of these extra modes. We also show that coupled intersubband plasmon-phonon modes should be observed for temperatures as high as 300 K.