997 resultados para Toluene oxidation
Resumo:
This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0
Resumo:
It is very difficult to selectively oxidise stable compounds such as toluene and xylenes to useful chemicals with molecular oxygen (O 2) under moderate conditions. To achieve high conversion and less over-oxidised products, a new class of photocatalysts, metal hydroxide nanoparticles grafted with alcohols, is devised. They can efficiently oxidise alkyl aromatic compounds with O 2 using visible or ultraviolet light or even sunlight to generate the corresponding aldehydes, alcohols and acids at ambient temperatures and give very little over-oxidation. For example toluene can be oxidised with a 23% conversion after a 48-hour exposure to sunlight with 85% of the product being benzaldehyde, and only a trace of CO 2.The surface complexes grafted onto metal hydroxides can absorb light, generating free radicals on the surface, which then initiate aerobic oxidation of the stable alkyl aromatic molecules with high product selectivity. This mechanism is distinctly different from those of any known catalysts. The use of the new photocatalysts as a controlled means to generate surface radicals through light excitation allows us to drive the production of fine organic chemicals at ambient temperatures with sunlight. The process with the new photocatalysts is especially valuable for temperature-sensitive syntheses and a greener process than many conventional thermal reactions. © 2012 The Royal Society of Chemistry.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into consideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into onsideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
Calcined samples of chromia supported on Al2O3, ZnO, or SnO2 show both Cr(VI) and Cr(III) on the surface, Cr(VI) being preponderant in the case of Al2O3-supported catalysts. The proportion of Cr(VI) decreases with increase in Cr content of the calcined catalysts. Reduction of the supported chromia catalysts in H2 at 720 K for 1 hr gives rise to Cr(III) and Cr(V). On carrying out the dehydrogenation of cyclohexane on the chromia catalysts a higher proportion of Cr(V) is found than after treatment with hydrogen. Vanadia supported on Al2O3 or MoO3 shows significant proportion of V(IV) on carrying out the oxidation of toluene on the catalysts. Calcined MoO3 (10%)/Al2O3 shows only Mo(VI) on the surface at 300 K, but on heating to 670 K in vacuum shows the presence of a considerable proportion of Mo(V) which on cooling disproportionates to Mo(IV) and Mo(VI). Mo(V) is noticed on surfaces of this catalyst on reduction with hydrogen as also on carrying out dehydrogenation of cyclohexane. While Bi2MoO6 shows only Mo(VI) on the surface at 300 K, heating it to 670 K in vacuum changes it entirely to Mo(V) which then gives rise to Mo(IV) and Mo(VI) on cooling.
Resumo:
Liquid-phase homogeneous catalytic oxidation of styrene with Wilkinson complex by molecular oxygen in toluene medium gave selectively benzaldehyde and formaldehyde as the primary products. Higher temperatures and styrene conversions eventually led to acid formation due to co-oxidation of aldehyde.A reaction induction period and an initiation period, typical of free-radical reactions, characterized the oxidation process. The effects of temperature and catalyst and styrene concentrations on the conversion of styrene to benzaldehyde and acid formation have been studied. The optimum reaction parameters have been determined as a styrene-to-solvent mole ratio of 0.5, a catalyst-to-styrene mole ratio of 5.0 X lo4, and a reaction temperature of 75 "C. A reaction scheme based upon free-radical mechanism yielded a pseudo-first-order model which agreed well with the observed kinetic data in the absence of co-oxidation of aldehyde. A second-order model was found to fit the experimental data better in the case of aldehyde conversion to acid.
Resumo:
Biotransformations of a series of ortho-, meta- and para-substituted ethylbenzene and propylbenzene substrates have been carried out, using Pseudomonas putida UV4, a source of toluene dioxygenase (TDO). The ortho- and para-substituted alkylbenzene substrates yielded, exclusively, the corresponding enantiopure cis-dihydrodiols of the same absolute configuration. However, the meta isomers, generally, gave benzylic alcohol bioproducts, in addition to the cis-dihydrodiols (the meta effect). The benzylic alcohols were of identical (R) absolute configuration but enantiomeric excess values were variable. The similar (2R) absolute configurations of the cis-dihydrodiols are consistent with both the ethyl and propyl groups having dominant stereodirecting effects over the other substituents. The model used earlier, to predict the regio- and stereo-chemistry of cis-dihydrodiol bioproducts derived from substituted benzene substrates has been refined, to take account of non-symmetric subsituents like ethyl or propyl groups. The formation of benzylic hydroxylation products, from meta-substituted benzene substrates, without further cis-dihydroxylation to yield triols provides a further example of the meta effect during toluene dioxygenase-catalysed oxidations.
Resumo:
Toluene- and naphthalene-dioxygenase-catalysed sulfoxidation of nine disubstituted methylphenyl sulfides, using whole cells of Pseudomonas putida, consistently gave the corresponding enantioenriched sulfoxides. Using the P. putida UV4 mutant strain, and these substrates, differing proportions of the corresponding cis-dihydrodiol sulfides were also isolated. Evidence was found for the concomitant dioxygenase-catalysed cis-dihydroxylation and sulfoxidation of methyl paratolyl sulfide. A simultaneous stereoselective reductase-catalysed deoxygenation of (S)-methyl para-tolyl sulfoxide, led to an increase in the proportion of the corresponding cis-dihydrodiol sulfide. The enantiopurity values and absolute configurations of the corresponding cis-dihydrodiol metabolites from methyl ortho-and para-substituted phenyl sulfides were determined by different methods, including chemoenzymatic syntheses from the cis-dihydrodiol metabolites of para-substituted iodobenzenes. Further evidence was provided to support the validity of an empirical model to predict, (i) the stereochemistry of cis-dihydroxylation of para-substituted benzene substrates, and (ii) the regiochemistry of cis-dihydroxylation reactions of ortho-substituted benzenes, each using toluene dioxygenase as biocatalyst.
Resumo:
A series of alkyl aryl sulfides were metabolised, using selected strains of the soil bacterium Pseudomonas putida containing either toluene dioxygenase (TDO) or naphthalene dioxygenase (NDO), to give chiral sulfoxides. Alkyl aryl sulfoxides 2a-2k, 4a-4j and 4l, having enantiomeric excess (ee) values of >90%, were obtained by use of the appropriate strain of P. putida (UV4 or NCIMB 8859), Enantiocomplimentarity was observed for the formation of sulfoxides 2a, 2b, 2d, 2j, 4a, 4b and 4d, with TDO-catalysed (UV4) oxidation favouring the (R) enantiomer and NDO-catalysed oxidation (NCIMB 8859) the (S) enantiomer. Evidence of involvement of the TDO enzyme was obtained using a recombinant strain of Escherichia coli (pKST 11), The marked degree of stereoselectivity appears to be mainly due to enzyme-catalysed asymmetric sulfoxidation, however the possibility of a minor contribution from kinetic resolution, in some cases, cannot be excluded.
Resumo:
Selected strains of the bacterium Pseudomonas putida (previously shown to effect dioxygenase-catalysed asymmetric cis-dihydroxylation of alkenes) have been found to yield chiral sulfoxides from the corresponding sulfides with a strong preference for the (R)- or (S)-configurations but without evidence of sulfone formation; similar results obtained using an Escherichia coli clone (pKST11, containing the Tod C1 C2 B and A genes encoding toluene dioxygenase from P. putida NCIMB 11767) are again consistent with a stereoselective dioxygenase-catalysed sulfoxidation.
Resumo:
Using toluene dioxygenase as biocatalyst, enantiopure cisdihydrodiol and cis-tetrahydrodiol metabolites, isolated as their ketone tautomers, were obtained from meta and ortho methoxyphenols. Although these isomeric phenol substrates are structurally similar, the major bioproducts from each of these biotransformations were found at different oxidation levels. The relatively stable cyclohexenone cis-diol metabolite from meta methoxyphenol was isolated, while the corresponding metabolite from ortho methoxyphenol was rapidly bioreduced to a cyclohexanone cis-diol. The chemistry of the 3-methoxycyclohexenone cis-diol product was investigated and elimination, aromatization, hydrogenation, regioselective O-exchange, Stork−Danheiser transposition and O-methylation reactions were observed. An offshoot of this technology provided a two-step chemoenzymatic synthesis, from meta methoxyphenol, of a recently reported chiral fungal metabolite; this synthesis also established the previously unassigned absolute configuration.
Resumo:
Benzylic monooxygenation of benzocycloalkenes, 2-4, by enzymes in intact cultures of Pseudomonas putida UV4 yielded exclusively the [R] enantiomers, 6-8, and the derived ketones 10-12; by contrast, biotransformation of benzocyclobutene, 1, yielded both monooxygenation (5 and 9), dioxygenation (13, 14 and 15), and trioxygenation (16) products.
Resumo:
The semiconductor photocatalysed (SPC) oxidation of toluene is performed inside an NMR spectrometer and the reaction monitored simultaneously in-situ, using a fibre optic probe/diffuser to provide the UV light to activate the titania photocatalyst coating on the inside of the NMR tube. Such a system has great potential for the simple rapid screening of a wide range of SPC mediated organic reactions.
Resumo:
The thesis deals with studies on the synthesis, characterisation and catalytic applications of some new transition metal complexes of the Schiff bases derived from 3-hydroxyquinoxaline 2-carboxaldehyde.. Schiff bases which are considered as ‘privileged ligands’ have the ability to stabilize different metals in different oxidation states and thus regulate the performance of metals in a large variety of catalytic transformations. The catalytic activity of the Schiff base complexes is highly dependant on the environment about the metal center and their conformational flexibility. Therefore it is to be expected that the introduction of bulky substituents near the coordination sites might lead to low symmetry complexes with enhanced catalytic properties. With this view new transition metal complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde have been synthesised. These Schiff bases have more basic donor nitrogen atoms and the presence of the quinoxaline ring may be presumed to build a favourable topography and electronic environment in the immediate coordination sphere of the metal. The aldehyde was condensed with amines 1,8-diaminonaphthalene, 2,3-diaminomaleonitrile, 1,2-diaminocyclohexane, 2-aminophenol and 4-aminoantipyrine to give the respective Schiff bases. The oxovanadium(IV), copper(II) and ruthenium(II)complexes of these Schiff bases were synthesised and characterised. All the oxovanadium(IV) complexes have binuclear structure with a square pyramidal geometry. Ruthenium and copper form mononuclear complexes with the Schiff base derived from 4- aminoantipyrine while binuclear square planar complexes are formed with the other Schiff bases. The catalytic activity of the copper complexes was evaluated in the hydroxylation of phenol with hydrogen peroxide as oxidant. Catechol and hydroquinone are the major products. Catalytic properties of the oxovanadium(IV) complexes were evaluated in the oxidation of cyclohexene with hydrogen peroxide as the oxidant. Here allylic oxidation products rather than epoxides are formed as the major products. The ruthenium(II) complexes are found to be effective catalysts for the hydrogenation of benzene and toluene. The kinetics of hydrogenation was studied and a suitable mechanism has been proposed.
Resumo:
The objective of this research was to investigate the oxidation of organic compounds in molten alkali metal hydroxides containing manganates. It has been shown that controlled oxidation can be readily achieved with high specificity to give products in high yield with very short reaction times. The concurrent changes in the melt were monitored using a vibrating platinum indicator electrode with a quazi-reference electrode which was successfully developed for use in molten (Na-K)OH eutectic at 523K. Henry's Law constants for water in the molten eutectic system (Na-K)OH have been measured and used to calculate the water concentration in the melt. The electrochemistry of manganates in molten (Na-K)OH eutectic at 523K has been studied using the vibrating platinum electrode, and the existence of the species Mn(II), Mn(II!), Mn(IV), Mn(V) and Mn(VI) in such melts has been investigated at various water concentrations. The half-wave potentials of the voltammetric waves were measured versus the cathodic limit of the melt. The stability of Mn(V) or Mn(VI) in the melt was achieved by varying the water concentration. A range of organic chemicals has been passed through molten (Na-K)OH at 523K and the reactions of these chemicals with the melt have been studied. The same organics were then passed through molten (Na-K)OH containing stabilized Mn(V) or Mn{VI) without violent reaction. Methanol, allyl alcohol, propane 1, 2 diol, I-heptene and acetone were oxidized by Mn(V) and Mn(VI). Ethanol was only oxidized by Mn(VI), isopropanol and benzyl alcohol were only oxidized by Mn(V). Npropanol, butanol, 2 methyl propan-2-ol, n-hexane, n-heptane toluene and cyclohexane were unchanged by both Mn(V) and Mn(VI). Detailed experiments have been performed on the reactions of ethanol, iso-propanol and methanol in molten (Na-K)OH containing stabilized Mrt(V) or Mn(VI), and reaction mechanisms have been postulated. Ethanol and iso-propanol were oxidized to acetaldehyde and acetone respectively with a potential for useful chemical process. The oxidation of methanol could be developed as a basis for an industrial methanol disposal process.