943 resultados para Time-Fractional Diffusion-Wave Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 34A08 (main), 34G20, 80A25

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we develop a new mathematical model for the Pennes’ bioheat equation assuming a fractional time derivative of single order. A numerical method for the solu- tion of such equations is proposed, and, the suitability of the new model for modelling real physical problems is studied and discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics(R)) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, rough set approach computing issues concerning reducts of decision tables have attracted the attention of many researchers. In this paper, we present the time complexity of an algorithm computing reducts of decision tables by relational database approach. Let DS = (U, C ∪ {d}) be a consistent decision table, we say that A ⊆ C is a relative reduct of DS if A contains a reduct of DS. Let s = be a relation schema on the attribute set C ∪ {d}, we say that A ⊆ C is a relative minimal set of the attribute d if A contains a minimal set of d. Let Qd be the family of all relative reducts of DS, and Pd be the family of all relative minimal sets of the attribute d on s. We prove that the problem whether Qd ⊆ Pd is co-NP-complete. However, the problem whether Pd ⊆ Qd is in P .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a numerical program has been developed to simulate the wave-induced ship motions in the time domain. Wave-body interactions have been studied for various ships and floating bodies through forced motion and free motion simulations in a wide range of wave frequencies. A three-dimensional Rankine panel method is applied to solve the boundary value problem for the wave-body interactions. The velocity potentials and normal velocities on the boundaries are obtained in the time domain by solving the mixed boundary integral equations in relation to the source and dipole distributions. The hydrodynamic forces are calculated by the integration of the instantaneous hydrodynamic pressures over the body surface. The equations of ship motion are solved simultaneously with the boundary value problem for each time step. The wave elevation is computed by applying the linear free surface conditions. A numerical damping zone is adopted to absorb the outgoing waves in order to satisfy the radiation condition for the truncated free surface. A numerical filter is applied on the free surface for the smoothing of the wave elevation. Good convergence has been reached for both forced motion simulations and free motion simulations. The computed added-mass and damping coefficients, wave exciting forces, and motion responses for ships and floating bodies are in good agreement with the numerical results from other programs and experimental data.