Stability analysis of Crank-Nicolson and Euler schemes for time-dependent diffusion equations


Autoria(s): Oishi, Cassio Machiaveli; Yuan, Jin Yun; Cuminato, José Alberto; Stewart, David E.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

21/10/2015

21/10/2015

01/06/2015

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

In this paper, we study the stability of the Crank-Nicolson and Euler schemes for time-dependent diffusion coefficient equations on a staggered grid with explicit and implicit approximations to the Dirichlet boundary conditions. Using the matrix representation for the numerical scheme and boundary conditions it is shown that for implicit boundary conditions the Crank-Nicolson scheme is unrestrictedly stable while it becomes conditionally stable for explicit boundary conditions. Numerical examples are provided illustrating this behavior. For the Euler schemes the results are similar to those for the constant coefficient case. The implicit Euler with implicit or explicit boundary conditions is unrestrictedly stable while the explicit Euler with explicit boundary conditions presents the usual stability restriction on the time step.

Formato

487-513

Identificador

http://link.springer.com/article/10.1007%2Fs10543-014-0509-x

Bit Numerical Mathematics. Dordrecht: Springer, v. 55, n. 2, p. 487-513, 2015.

0006-3835

http://hdl.handle.net/11449/129341

http://dx.doi.org/10.1007/s10543-014-0509-x

WOS:000354704400007

Idioma(s)

eng

Publicador

Springer

Relação

Bit Numerical Mathematics

Direitos

closedAccess

Palavras-Chave #Stability analysis #Crank-Nicolson scheme #Staggered grids #Boundary conditions #Non-constant coefficient diffusion equations
Tipo

info:eu-repo/semantics/article