971 resultados para Super threshold random variable


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many modeling situations in which parameter values can only be estimated or are subject to noise, the appropriate mathematical representation is a stochastic ordinary differential equation (SODE). However, unlike the deterministic case in which there are suites of sophisticated numerical methods, numerical methods for SODEs are much less sophisticated. Until a recent paper by K. Burrage and P.M. Burrage (1996), the highest strong order of a stochastic Runge-Kutta method was one. But K. Burrage and P.M. Burrage (1996) showed that by including additional random variable terms representing approximations to the higher order Stratonovich (or Ito) integrals, higher order methods could be constructed. However, this analysis applied only to the one Wiener process case. In this paper, it will be shown that in the multiple Wiener process case all known stochastic Runge-Kutta methods can suffer a severe order reduction if there is non-commutativity between the functions associated with the Wiener processes. Importantly, however, it is also suggested how this order can be repaired if certain commutator operators are included in the Runge-Kutta formulation. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we consider subordinated processes controlled by a family of subordinators which consist of a power function of a time variable and a negative power function of an α-stable random variable. The effect of parameters in the subordinators on the subordinated process is discussed. By suitable variable substitutions and the Laplace transform technique, the corresponding fractional Fokker–Planck-type equations are derived. We also compute their mean square displacements in a free force field. By choosing suitable ranges of parameters, the resulting subordinated processes may be subdiffusive, normal diffusive or superdiffusive

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absorption produced by the audience in concert halls is considered a random variable. Beranek's proposal [L. L. Beranek, Music, Acoustics and Architecture (Wiley, New York, 1962), p. 543] that audience absorption is proportional to the area they occupy and not to their number is subjected to a statistical hypothesis test. A two variable linear regression model of the absorption with audience area and residual area as regressor variables is postulated for concert halls without added absorptive materials. Since Beranek's contention amounts to the statement that audience absorption is independent of the seating density, the test of the hypothesis lies in categorizing halls by seating density and examining for significant differences among slopes of regression planes of the different categories. Such a test shows that Beranek's hypothesis can be accepted. It is also shown that the audience area is a better predictor of the absorption than the audience number. The absorption coefficients and their 95% confidence limits are given for the audience and residual areas. A critique of the regression model is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Effective Exponential SNR Mapping (EESM) is an indispensable tool for analyzing and simulating next generation orthogonal frequency division multiplexing (OFDM) based wireless systems. It converts the different gains of multiple subchannels, over which a codeword is transmitted, into a single effective flat-fading gain with the same codeword error rate. It facilitates link adaptation by helping each user to compute an accurate channel quality indicator (CQI), which is fed back to the base station to enable downlink rate adaptation and scheduling. However, the highly non-linear nature of EESM makes a performance analysis of adaptation and scheduling difficult; even the probability distribution of EESM is not known in closed-form. This paper shows that EESM can be accurately modeled as a lognormal random variable when the subchannel gains are Rayleigh distributed. The model is also valid when the subchannel gains are correlated in frequency or space. With some simplifying assumptions, the paper then develops a novel analysis of the performance of LTE's two CQI feedback schemes that use EESM to generate CQI. The comprehensive model and analysis quantify the joint effect of several critical components such as scheduler, multiple antenna mode, CQI feedback scheme, and EESM-based feedback averaging on the overall system throughput.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present in this paper, approximate analytical expressions for the intensity of light scattered by a rough surface, whose elevation. xi(x,y) in the z-direction is a zero mean stationary Gaussian random variable. With (x,y) and (x',y') being two points on the surface, we have h. = 0 with a correlation, = sigma(2)g(r), where r = (x - x')(2) + ( y - y')(2)](1/2) is the distance between these two points. We consider g(r) = exp-r/l)(beta)] with 1 <= beta <= 2, showing that g(0) = 1 and g(r) -> 0 for r >> l. The intensity expression is sought to be expressed as f(v(xy)) = {1 + (c/2y)v(x)(2) + v(y)(2)]}(-y), where v(x) and v(y) are the wave vectors of scattering, as defined by the Beckmann notation. In the paper, we present expressions for c and y, in terms of sigma, l, and beta. The closed form expressions are verified to be true, for the cases beta = 1 and beta = 2, for which exact expressions are known. For other cases, i.e., beta not equal 1, 2 we present approximate expressions for the scattered intensity, in the range, v(xy) = (v(x)(2) + v(y)(2))(1/2) <= 6.0 and show that the relation for f(v(xy)), given above, expresses the scattered intensity quite accurately, thus providing a simple computational methods in situations of practical importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimation of design quantiles of hydrometeorological variables at critical locations in river basins is necessary for hydrological applications. To arrive at reliable estimates for locations (sites) where no or limited records are available, various regional frequency analysis (RFA) procedures have been developed over the past five decades. The most widely used procedure is based on index-flood approach and L-moments. It assumes that values of scale and shape parameters of frequency distribution are identical across all the sites in a homogeneous region. In real-world scenario, this assumption may not be valid even if a region is statistically homogeneous. To address this issue, a novel mathematical approach is proposed. It involves (i) identification of an appropriate frequency distribution to fit the random variable being analyzed for homogeneous region, (ii) use of a proposed transformation mechanism to map observations of the variable from original space to a dimensionless space where the form of distribution does not change, and variation in values of its parameters is minimal across sites, (iii) construction of a growth curve in the dimensionless space, and (iv) mapping the curve to the original space for the target site by applying inverse transformation to arrive at required quantile(s) for the site. Effectiveness of the proposed approach (PA) in predicting quantiles for ungauged sites is demonstrated through Monte Carlo simulation experiments considering five frequency distributions that are widely used in RFA, and by case study on watersheds in conterminous United States. Results indicate that the PA outperforms methods based on index-flood approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study introduces two new alternatives for global response sensitivity analysis based on the application of the L-2-norm and Hellinger's metric for measuring distance between two probabilistic models. Both the procedures are shown to be capable of treating dependent non-Gaussian random variable models for the input variables. The sensitivity indices obtained based on the L2-norm involve second order moments of the response, and, when applied for the case of independent and identically distributed sequence of input random variables, it is shown to be related to the classical Sobol's response sensitivity indices. The analysis based on Hellinger's metric addresses variability across entire range or segments of the response probability density function. The measure is shown to be conceptually a more satisfying alternative to the Kullback-Leibler divergence based analysis which has been reported in the existing literature. Other issues addressed in the study cover Monte Carlo simulation based methods for computing the sensitivity indices and sensitivity analysis with respect to grouped variables. Illustrative examples consist of studies on global sensitivity analysis of natural frequencies of a random multi-degree of freedom system, response of a nonlinear frame, and safety margin associated with a nonlinear performance function. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the microcosm of information theory, I explore what it means for a system to be functionally irreducible. This is operationalized as quantifying the extent to which cooperative or “synergistic” effects enable random variables X1, ... , Xn to predict (have mutual information about) a single target random variable Y . In Chapter 1, we introduce the problem with some emblematic examples. In Chapter 2, we show how six different measures from the existing literature fail to quantify this notion of synergistic mutual information. In Chapter 3 we take a step towards a measure of synergy which yields the first nontrivial lowerbound on synergistic mutual information. In Chapter 4, we find that synergy is but the weakest notion of a broader concept of irreducibility. In Chapter 5, we apply our results from Chapters 3 and 4 towards grounding Giulio Tononi’s ambitious φ measure which attempts to quantify the magnitude of consciousness experience.