185 resultados para Streptomyces aureofaciens
Resumo:
Marine Streptomyces are potential candidates for novel natural products and industrial catalysts. In order to set up biosynthesis approach for a holomycin-producing strain M095 isotated from Jiaozhou Bay, China, a genetic transformation system was established using intergeneric conjugation. The plasmid pIJ8600 consists of an origin of replication for Escherichia coli, a phage integrase directing efficient site-specific integration in bacterial chromosome, thiostrepton-induced promoter and an attP sequence. Using E. coli ET12567 (pUZ8002) carrying pIJ8600 as a conjugal donor, while it was mated with strain M095, pIJ8600 was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. The frequency of exconjugants was 1.9 +/- 0.13 x 10(-4) per recipient cell. Analysis of eight exconjugants showed pIJ8600 was stable integrated at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of growth and antimicrobial activity analysis indicated that the integration of pIJ8600 did not seem to affect the biosynthesis of antibiotics or other essential amino acids. To demonstrate the feasibility of above gene transfer system, the allophycocyanin gene (apc) from cyanobacterium Anacystis nidulans UTEX625 was expressed in strain M095, and the results indicated heterologous allophycocyanin could be expressed and folded effectively. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
In the course of a screening program, we have isolated the new natural product, 5,7-dihydroxy-5,6,7,8-tetrahydroazocin-2(IH)-one (1), from the staurosporine producing marine-derived Streptomyces sp. strain QD518. Here we report the isolation and structure elucidation of 1 and the artifacts 3 and 4 resulting from I by acid catalyzed intra- and inter-molecular reactions.
Resumo:
Allophycocyanin is one of the most important marine active peptides. Previous studies suggested that recombinant allophycocyanin (rAPC) could remarkably inhibit the S-180 carcinoma in mice, indicating its potential pharmaceutical uses. Based on intergeneric conjugal transfer, heterologous expression of rAPC was first achieved in marine Streptomyces sp. isolate M097 through inserting the apc gene into the thiostrepton-induced vector pIJ8600. The transformation frequency for this system was approximately 10(-4) exconjugants/recipient. In the transformed Streptomyces sp. isolate M097, the yield of purified rAPC could amount to about 38 mg/l using a simple purification protocol, and HPLC analysis showed that the purity of the protein reached about 91.5%. In vitro activity tests also revealed that the purified rAPC had effective scavenging abilities on superoxide and hydroxyl radicals. This would widen the usefulness of the marine Streptomyces as a host to express the rAPC and to offer industrial strain for the production of rAPC.
Potencial de isolados de Streptomyces spp. no controle de Stenocarpella maydis em sementes de milho.
Resumo:
2003
Resumo:
The present study has identified an actinomycete culture (S. psammoticus) which was capable of producing all the three major ligninolytic enzymes. The study revealed that least explored mangrove regions are potential sources for the isolation of actinomycetes with novel characteristics. The laccase production by the strain in SmF and SSF was found to be much higher than the reported values. The growth of the organism was favoured by alkaline pH and salinity of the medium. The enzyme also exhibited novel characteristics such as activity and stability at alkaline pH and salt tolerance. These two characters are quite significant from the industrial point of view making the enzyme an ideal candidate for industrial applications. Many of the application studies to date are focused on enzymes from fungal sources. However, the fungal laccases, which are mostly acidic in nature, could not be used universally for all application purposes especially, for the treatment of effluents from different industries, largely due to the alkaline nature of the effluents. Under such situations the enzymes from organisms like S. psammoticus with wide pH range could play a better role than the fungal counterparts. In the present study, the ability of the isolated strain and laccase in the degradation of dyes and phenolic compounds was successfully proved. The reusability of the immobilized enzyme system made the entire treatment process inexpensive. Thus it can be concluded from the present study that the laccase from this organism could be hopefully employed for the eco-friendly treatment of dye or phenol containing industrial effluents from various sources.
Resumo:
The present study is focused on the production, purification and characterization of multiple thermostable α-galactosidases from a novel actinomycete strain Streptomyces griseoloalbus. The Chapter I of the thesis covers the wide literature regarding α-galactosidases from various sources and their potential applications. The Chapter 11 deals with the isolation of α-galactosidase- producing actinomycetes and selection of the best strain. The Chapters III and IV describe the optimization of α-galactosidase production under submerged fermentation and solid-state fermentation respectively. The Chapter V describes the purification and characterization of multiple α-galactosidases and also the obvious existence of a novel galactose-tolerant enzyme. The Chapter VI illustrates the potential applications of α-galactosidases from S. griseoloalbus followed by the Chapter VII summarizing and concluding the results of the present investigation.
Resumo:
The role of clavulanic acid, an unstable antibiotic produced by Streptomyces clavuligerus, in biomass accumulation and production of clavulanic acid in batch cultures of the organism was examined. The organism was grown in a medium containing either 20 g/l lysine, 1 g/l lysine or 1 g/l lysine supplemented with degraded clavulanic acid as nitrogen sources. Biomass accumulation was highest in cultures grown with supplemented degraded clavulanic acid and reached a maximum of 2.2 g/l, compared with 1.5 g/l when lysine only was used. The yield coefficient for clavulanic acid production was again highest in cultures grown with supplemented degraded clavulanic acid, with a Y-p/x, value of 2 mg/g compared with Y-p/x value of 1.5 mg/g in 20 g/l lysine. No clavulanic acid was produced in cultures containing non-supplemented 1 g/l lysine. Non-degraded clavulanic, acid was added at 60 h to non-producing cultures of the organism containing 1 g/l lysine only. Clavulanic acid concentration immediately decreased on addition from 0.04 g/l over a period of 20 h, then remained constant at 0.02 g/l for a further 30 h until the end of the cultivation. This suggests that the rate of degradation was equivalent to the rate of production of clavulanic acid following a period of initial additive degradation. These results indicate that clavulanic acid is both produced and degraded in cultures of S. clavuligerus and that the products of degradation are used by the organism, resulting in further production of the antibiotic. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Cultures of cosmomycin D-producing Streptomyces olindensis ICB20 that were propagated for many generations underwent mutations that resulted in production of a range of related anthracyclines by the bacteria. The anthracyclines that retained the two trisaccharide chains of the parent compound were separated by HPLC. Exact mass determination of these compounds revealed that they differed from cosmomycin D (CosD) in that they contained one to three fewer oxygen atoms (loss of hydroxyl groups). Some of the anthracyclines that were separated by HPLC had the same mass. The location from which the hydroxyl groups had been lost relative to CosD (on the aglycone and/or on the sugar residues) was probed by collisionally-activated dissociation using an electrospray ionisation linear quadrupole ion trap mass spectrometer. The presence of anthracyclines with the same mass, but different structure, was confirmed using an electrospray ionisation travelling wave ion mobility mass spectrometer.
Resumo:
Para determinar as variáveis morfogênicas, estruturais e o fluxo de tecidos os tratamentos foram duas intensidades (baixa e moderada) e dois métodos de pastejo (pastejo com lotação contínua e rotacionada). No experimento 1 o bastão graduado apresentou a melhor correlação com a massa de forragem (r2=0,65). No 2 as melhores correlações foram obtidas quando avaliadas as faixas de pós-pastejo para o disco medidor (r2=0,47) e as de pré-pastejo para o bastão graduado (r2=0,36). Para as variáveis morfogênicas e estruturais as intensidades de pastejo foram responsáveis por diferenças na taxa de elongação de folhas (intensidade baixa resultou em maior taxa de elongação) e nas características estruturais (intensidade baixa resultou em menor densidade de perfilhos, maior comprimento e número de folhas vivas). Os métodos de pastejo influenciaram as características morfogênicas (lotação contínua resultou em maior taxa de elongação de folhas, maior taxa de surgimento e tempo de vida das folhas no ciclo de observação I) e estruturais (lotação contínua resultou em maior densidade de perfilhos); bem como foi obtida interação com as intensidades e com os ciclos de avaliação. O fluxo de crescimento (favorecido por lotação rotacionada a baixa intensidade) e de senescência (favorecido por lotação contínua a baixa intensidade) foram afetados pelos tratamentos, enquanto que o fluxo de consumo não foi alterado pelos tratamentos.
Resumo:
Metabolic flux analysis (MFA) is a powerful tool for analyzing cellular metabolism. In order to control the growth conditions of a specific organism, it is important to have a complete understanding of its MFA. This would allowed us to improve the processes for obtaining products of interest to human and also to understand how to manipulate the genome of a cell, allowing optimization process for genetic engineering. Streptomyces olindensis ICB20 is a promising producer of the antibiotic cosmomycin, a powerful antitumor drug. Several Brazilian researchers groups have been developing studies in order to optimize cosmomycin production in bioreactors. However, to the best of our knowledge, nothing has been done on metabolic fluxes analysis field. Therefore, the aim of this work is to identify several factors that can affect the metabolism of Streptomyces olindensis ICB20, through the metabolic flux analysis. As a result, the production of the secondary metabolite, cosmomycin, can be increased. To achieve this goal, a metabolic model was developed which simulates a distribution of internal cellular fluxes based on the knowledge of metabolic pathways, its interconnections, as well as the constraints of microorganism under study. The validity of the proposed model was verified by comparing the computational data obtained by the model with the experimental data obtained from the literature. Based on the analysis of intracellular fluxes, obtained by the model, an optimal culture medium was proposed. In addition, some key points of the metabolism of Streptomyces olindensis were identified, aiming to direct its metabolism to a greater cosmomycin production. In this sense it was found that by increasing the concentration of yeast extract, the culture medium could be optimized. Furthermore, the inhibition of the biosynthesis of fatty acids was found to be a interesting strategy for genetic manipulation. Based on the metabolic model, one of the optimized medium conditions was experimentally tested in order to demonstrate in vitro what was obtained in silico. It was found that by increasing the concentration of yeast extract in the culture medium would induce to an increase of the cosmomycin production
Resumo:
The keratin is not degraded by common enzyme, keratinases have the ability to degrade native keratin and others insoluble enzymes. In the present work was Studied keratinase produced by Streptomyces sp LMI-1 isolated from industrial plant of poultry processing. The enzyme degraded 87% of feathers after 120 h, it was stimulated by Ba(2+) and inhibited by Ca(2+), Mn(2+), EDTA and Hg(+). The optimum pH and temperature for the enzyme was 8.5 and 60 degrees C, respectively. The enzyme was stable after 2 hours at 50 degrees C. The culture broth analysis by thin layer chromatography showed presence of amino acids serine, methionine, proline, tyrosine and leucine after 72 hours of incubation. The microorganism showed potential for use in industrial process because of higher enzyme production and feathers degradation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)