1000 resultados para Singularities in Feynman propagators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we compare the simple singularities of germs from R-2 to R-p with multiplicity 2 or 3 with the singularities appearing in the set of 2-ruled surfaces. We also study the topological type of all finitely determined singularities by studying generic projections of these singularities in R-3. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model of the process employed by a sonic anemometer to build up the measured wind vector in a steady flow is presented to illustrate the way the geometry of these sensors as well as the characteristics of aerodynamic disturbance on the acoustic path can lead to singularities in the transformation function that relates the measured (disturbed) wind vector with the real (corrected) wind vector, impeding the application of correction/calibration functions for some wind conditions. An implicit function theorem allows for the identification of those combinations of real wind conditions and design parameters that lead to undefined correction/ calibration functions. In general, orthogonal path sensors do not show problematic combination of parameters. However, some geometric sonic sensor designs, available in the market, with paths forming smaller angles could lead to undefined correction functions for some levels of aerodynamic disturbances and for certain wind directions. The parameters studied have a strong influence on the existence and number of singularities in the correction/ calibration function as well as on the number of singularities for some combination of parameters. Some conclusions concerning good design practices are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that bifurcations in chaotic scattering manifest themselves through the appearance of an infinitely fine-scale structure of singularities in the cross section. These ""rainbow singularities"" are created in a cascade, which is closely related to the bifurcation cascade undergone by the set of trapped orbits (the chaotic saddle). This cascade provides a signature in the differential cross section of the complex pattern of bifurcations of orbits underlying the transition to chaotic scattering. We show that there is a power law with a universal coefficient governing the sequence of births of rainbow singularities and we verify this prediction by numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose new spanning tests that assess if the initial and additional assets share theeconomically meaningful cost and mean representing portfolios. We prove their asymptoticequivalence to existing tests under local alternatives. We also show that unlike two-step oriterated procedures, single-step methods such as continuously updated GMM yield numericallyidentical overidentifyng restrictions tests, so there is arguably a single spanning test.To prove these results, we extend optimal GMM inference to deal with singularities in thelong run second moment matrix of the influence functions. Finally, we test for spanningusing size and book-to-market sorted US stock portfolios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note we give a numerical characterization of hypersurface singularities in terms of the normalized Hilbert-Samuel coefficients, and we interpret this result from the point of view of rigid polynomials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we show that for corank 1, quasi-homogeneous and finitely determined map germs f : (C-n, 0)-> (C-3, 0), n >= 3 one can obtain formulae for the polar multiplicities defined on the following stable types of f, f(Delta(f) and f(Sigma(n-2,1)(f), in terms of the weights and degrees of f. As a consequence we show how to compute the Euler obstruction of such stable types, also in terms of the weights and degrees of f.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stable singularities of differential map germs constitute the main source of studying the geometric and topological behavior of these maps. In particular, one interesting problem is to find formulae which allow us to count the isolated stable singularities which appear in the discriminant of a stable deformation of a finitely determined map germ. Mond and Pellikaan showed how the Fitting ideals are related to such singularities and obtain a formula to count the number of ordinary triple points in map germs from C-2 to C-3, in terms of the Fitting ideals associated with the discriminant. In this article we consider map germs from (Cn+m, 0) to (C-m, 0), and obtain results to count the number of isolated singularities by means of the dimension of some associated algebras to the Fitting ideals. First in Corollary 4.5 we provide a way to compute the total sum of these singularities. In Proposition 4.9, for m = 3 we show how to compute the number of ordinary triple points. In Corollary 4.10 and with f of co-rank one, we show a way to compute the number of points formed by the intersection between a germ of a cuspidal edge and a germ of a plane. Furthermore, we show in some examples how to calculate the number of isolated singularities using these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this talk we would like to analyse the appearance of singularities in FLRW cosmological models which evolve close to w = -1, where w is the barotropic index of the universe. We relate small terms in cosmological time around w = -1 with the correspondent scale factor of the universe and check for the formation of singularities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Revealing the layout of cortical maps is important both for understanding the processes involved in their development and for uncovering the mechanisms underlying neural computation. The typical organization of orientation maps in the cat visual cortex is radial; complete orientation cycles are mapped around orientation singularities. In contrast, long linear zones of orientation representation have been detected in the primary visual cortex of the tree shrew. In this study, we searched for the existence of long linear sequences and wide linear zones within orientation preference maps of the cat visual cortex. Optical imaging based on intrinsic signals was used. Long linear sequences and wide linear zones of preferred orientation were occasionally detected along the border between areas 17 and 18, as well as within area 18. Adjacent zones of distinct radial and linear organizations were observed across area 18 of a single hemisphere. However, radial and linear organizations were not necessarily segregated; long (7.5 mm) linear sequences of preferred orientation were found embedded within a typical pinwheel-like organization of orientation. We conclude that, although the radial organization is dominant, perfectly linear organization may develop and perform the processing related to orientation in the cat visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06