984 resultados para Single-electron transistor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes two kinds of novel single-electron analog-digital conversion (ADC) and digital-analog conversion (DAC) circuits that consist of single-electron transistors (SETs) and metal-oxide-semiconductor (MOS) transistors. The SET/MOS hybrid ADC and DAC circuits possess the merits of the SET circuit and the MOS circuit. We obtain the SPICE macro-modeling code of the SET transistor by studying and fitting the characteristics of the SET with SPICE simulation and Monte Carlo simulation methods. The SPICE macro-modeling code is used for the simulation of the SET/MOS hybrid ADC and DAC circuits. We simulate the performances of the SET/MOS hybrid 3-b ADC and 2-b DAC circuits by using the H-SPICE simulator. The simulation results demonstrate that the hybrid circuits can perform analog-digital and digital-analog data conversion well at room temperature. The hybrid ADC and DAC circuits have advantages as-follows: 1) compared with conventional circuits, the architectures of the circuits are simpler; 2) compared with single electron transistor circuits, the circuits have much larger load capability; 3) the power dissipation of the circuits are lower than uW; 4) the data conversion rate of the circuits can exceed 100 MHz; and 5) the resolution of the ADC and DAC circuits can be increased by the pipeline architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the continuous weak measurement of a solid-state qubit by single electron transistors (SET). For single-dot SET, we find that in nonlinear response regime the signal-to-noise ratio can violate the universal upper bound imposed quantum mechanically on any linear response detectors. We understand the violation by means of the cross-correlation of the detector currents. For double-dot SET, we discuss its robustness against wider range of temperatures, quantum efficiency, and the relevant open issues unresolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator,which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single electron transistor (SET) is a Coulomb blockade device, whose operation is based on the controlled manipulation of individual electrons. Single electron transistors show immense potential to be used in future ultra lowpower devices, high density memory and also in high precision electrometry. Most SET devices operate at cryogenic temperatures, because the charging energy is much smaller than the thermal oscillations. The room temperature operation of these devices is possible with sub- 10nm nano-islands due to the inverse dependance of charging energy on the radius of the conducting nano-island. The fabrication of sub-10nm features with existing lithographic techniques is a technological challenge. Here we present the results for the first room temperature operating SET device fabricated using Focused Ion Beam deposition technology. The SET device, incorporates an array of tungsten nano-islands with an average diameter of 8nm. The SET devices shows clear Coulomb blockade for different gate voltages at room temperature. The charging energy of the device was calculated to be 160.0 meV; the capacitance per junction was found to be 0.94 atto F; and the tunnel resistance per junction was calculated to be 1.26 G Ω. The tunnel resistance is five orders of magnitude larger than the quantum of resistance (26 k Ω) and allows for the localization of electrons on the tungsten nano-island. The lower capacitance of the device combined with the high tunnel resistance, allows for the Coulomb blockade effects observed at room temperature. Different device configurations, minimizing the total capacitance of the device have been explored. The effect of the geometry of the nano electrodes on the device characteristics has been presented. Simulated device characteristics, based on the soliton model have been discussed. The first application of SET device as a gas sensor has been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a single-electron transistor (SET) based upon a II–VI semiconductor quantum dot doped with a single-Mn ion. We present evidence that this system behaves like a quantum nanomagnet whose total spin and magnetic anisotropy depend dramatically both on the number of carriers and their orbital nature. Thereby, the magnetic properties of the nanomagnet can be controlled electrically. Conversely, the electrical properties of this SET depend on the quantum state of the Mn spin, giving rise to spin-dependent charging energies and hysteresis in the Coulomb blockade oscillations of the linear conductance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effect of magnetic anisotropy in a single electron transistor with ferromagnetic electrodes and a non-magnetic island. We identify the variation δμ of the chemical potential of the electrodes as a function of the magnetization orientation as a key quantity that permits to tune the electrical properties of the device. Different effects occur depending on the relative size of δμ and the charging energy. We provide preliminary quantitative estimates of δμ using a very simple toy model for the electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel single-electron multiple-valued memory. It is a metal-oxide-semiconductor field effect transistor (MOS)-type memory with multiple separate control gates and floating gate layer, which consists of nano-crystal grains. The electron can tunnel among the grains (floating gates) and between the floating gate layer and the MOS channel. The memory can realize operations of 'write', 'store' and 'erase' of multiple-valued signals exceeding three values by controlling the single electron tunneling behavior. We use Monte Carlo method to simulate the operation of single-electron four-valued memory. The simulation results show that it can operate well at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we report the first applications of TCNQ as a rapid and highly sensitive off-the-shelf cyanide detector. As a proof-of-concept, we have applied a kinetically selective single-electron transfer (SET) from cyanide to deep-lying LUMO orbitals of TCNQ to generate a persistently stable radical anion (TCNQ(center dot-)), under ambient condition. In contrast to the known cyanide sensors that operate with limited signal outputs, TCNQ(center dot-) offers a unique multiple signaling platform. The signal readability is facilitated through multichannel absorption in the UV-vis-NIR region and scattering-based spectroscopic methods like Raman spectroscopy and hyper Rayleigh scattering techniques. Particularly notable is the application of the intense 840 nm NIR absorption band to detect cyanide. This can be useful for avoiding background interference in the UV-vis region predominant in biological samples. We also demonstrate the fabrication of a practical electronic device with TCNQ as a detector. The device generates multiorder enhancement in current with cyanide because of the formation of the conductive TCNQ(center dot-).