989 resultados para Shape optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to develop an automated tool for the optimization of turbomachinery blades founded on an evolutionary strategy. This optimization scheme will serve to deal with supersonic blades cascades for application to Organic Rankine Cycle (ORC) turbines. The blade geometry is defined using parameterization techniques based on B-Splines curves, that allow to have a local control of the shape. The location in space of the control points of the B-Spline curve define the design variables of the optimization problem. In the present work, the performance of the blade shape is assessed by means of fully-turbulent flow simulations performed with a CFD package, in which a look-up table method is applied to ensure an accurate thermodynamic treatment. The solver is set along with the optimization tool to determine the optimal shape of the blade. As only blade-to-blade effects are of interest in this study, quasi-3D calculations are performed, and a single-objective evolutionary strategy is applied to the optimization. As a result, a non-intrusive tool, with no need for gradients definition, is developed. The computational cost is reduced by the use of surrogate models. A Gaussian interpolation scheme (Kriging model) is applied for the estimated n-dimensional function, and a surrogate-based local optimization strategy is proved to yield an accurate way for optimization. In particular, the present optimization scheme has been applied to the re-design of a supersonic stator cascade of an axial-flow turbine. In this design exercise very strong shock waves are generated in the rear blade suction side and shock-boundary layer interaction mechanisms occur. A significant efficiency improvement as a consequence of a more uniform flow at the blade outlet section of the stator is achieved. This is also expected to provide beneficial effects on the design of a subsequent downstream rotor. The method provides an improvement to gradient-based methods and an optimized blade geometry is easily achieved using the genetic algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When dealing with the design of a high-speed train, a multiobjective shape optimization problem is formulated, as these vehicles are object of many aerodynamic problems which are known to be in conflict. More mobility involves an increase in both the cruise speed and lightness, and these requirements directly influence the stability and the ride comfort of the passengers when the train is subjected to a side wind. Thus, crosswind stability plays a more relevant role among the aerodynamic objectives to be optimized. An extensive research activity is observed on aerodynamic response in crosswind conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La motivación de esta tesis es el desarrollo de una herramienta de optimización automática para la mejora del rendimiento de formas aerodinámicas enfocado en la industria aeronáutica. Este trabajo cubre varios aspectos esenciales, desde el empleo de Non-Uniform Rational B-Splines (NURBS), al cálculo de gradientes utilizando la metodología del adjunto continuo, el uso de b-splines volumétricas como parámetros de diseño, el tratamiento de la malla en las intersecciones, y no menos importante, la adaptación de los algoritmos de la dinámica de fluidos computacional (CFD) en arquitecturas hardware de alto paralelismo, como las tarjetas gráficas, para acelerar el proceso de optimización. La metodología adjunta ha posibilitado que los métodos de optimización basados en gradientes sean una alternativa prometedora para la mejora de la eficiencia aerodinámica de los aviones. La formulación del adjunto permite calcular los gradientes de una función de coste, como la resistencia aerodinámica o la sustentación, independientemente del número de variables de diseño, a un coste computacional equivalente a una simulación CFD. Sin embargo, existen problemas prácticos que han imposibilitado su aplicación en la industria, que se pueden resumir en: integrabilidad, rendimiento computacional y robustez de la solución adjunta. Este trabajo aborda estas contrariedades y las analiza en casos prácticos. Como resumen, las contribuciones de esta tesis son: • El uso de NURBS como variables de diseño en un bucle de automático de optimización, aplicado a la mejora del rendimiento aerodinámico de alas en régimen transónico. • El desarrollo de algoritmos de inversión de punto, para calcular las coordenadas paramétricas de las coordenadas espaciales, para ligar los vértices de malla a las NURBS. • El uso y validación de la formulación adjunta para el calculo de los gradientes, a partir de las sensibilidades de la solución adjunta, comparado con diferencias finitas. • Se ofrece una estrategia para utilizar la geometría CAD, en forma de parches NURBS, para tratar las intersecciones, como el ala-fuselaje. • No existen muchas alternativas de librerías NURBS viables. En este trabajo se ha desarrollado una librería, DOMINO NURBS, y se ofrece a la comunidad como código libre y abierto. • También se ha implementado un código CFD en tarjeta gráfica, para realizar una valoración de cómo se puede adaptar un código sobre malla no estructurada a arquitecturas paralelas. • Finalmente, se propone una metodología, basada en la función de Green, como una forma eficiente de paralelizar simulaciones numéricas. Esta tesis ha sido apoyada por las actividades realizadas por el Área de Dinámica da Fluidos del Instituto Nacional de Técnica Aeroespacial (INTA), a través de numerosos proyectos de financiación nacional: DOMINO, SIMUMAT, y CORESFMULAERO. También ha estado en consonancia con las actividades realizadas por el departamento de Métodos y Herramientas de Airbus España y con el grupo Investigación y Tecnología Aeronáutica Europeo (GARTEUR), AG/52. ABSTRACT The motivation of this work is the development of an automatic optimization strategy for large scale shape optimization problems that arise in the aeronautics industry to improve the aerodynamic performance; covering several aspects from the use of Non-Uniform Rational B-Splines (NURBS), the calculation of the gradients with the continuous adjoint formulation, the development of volumetric b-splines parameterization, mesh adaptation and intersection handling, to the adaptation of Computational Fluid Dynamics (CFD) algorithms to take advantage of highly parallel architectures in order to speed up the optimization process. With the development of the adjoint formulation, gradient-based methods for aerodynamic optimization become a promising approach to improve the aerodynamic performance of aircraft designs. The adjoint methodology allows the evaluation the gradients to all design variables of a cost function, such as drag or lift, at the equivalent cost of more or less one CFD simulation. However, some practical problems have been delaying its full implementation to the industry, which can be summarized as: integrability, computer performance, and adjoint robustness. This work tackles some of these issues and analyse them in well-known test cases. As summary, the contributions comprises: • The employment of NURBS as design variables in an automatic optimization loop for the improvement of the aerodynamic performance of aircraft wings in transonic regimen. • The development of point inversion algorithms to calculate the NURBS parametric coordinates from the space coordinates, to link with the computational grid vertex. • The use and validation of the adjoint formulation to calculate the gradients from the surface sensitivities in an automatic optimization loop and evaluate its reliability, compared with finite differences. • This work proposes some algorithms that take advantage of the underlying CAD geometry description, in the form of NURBS patches, to handle intersections and mesh adaptations. • There are not many usable libraries for NURBS available. In this work an open source library DOMINO NURBS has been developed and is offered to the community as free, open source code. • The implementation of a transonic CFD solver from scratch in a graphic card, for an assessment of the implementability of conventional CFD solvers for unstructured grids to highly parallel architectures. • Finally, this research proposes the use of the Green's function as an efficient paralellization scheme of numerical solvers. The presented work has been supported by the activities carried out at the Fluid Dynamics branch of the National Institute for Aerospace Technology (INTA) through national founding research projects: DOMINO, SIMUMAT, and CORESIMULAERO; in line with the activities carried out by the Methods and Tools and Flight Physics department at Airbus and the Group for Aeronautical Research and Technology in Europe (GARTEUR) action group AG/52.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjoint methods have proven to be an efficient way of calculating the gradient of an objective function with respect to a shape parameter for optimisation, with a computational cost nearly independent of the number of the design variables [1]. The approach in this paper links the adjoint surface sensitivities (gradient of objective function with respect to the surface movement) with the parametric design velocities (movement of the surface due to a CAD parameter perturbation) in order to compute the gradient of the objective function with respect to CAD variables.
For a successful implementation of shape optimization strategies in practical industrial cases, the choice of design variables or parameterisation scheme used for the model to be optimized plays a vital role. Where the goal is to base the optimization on a CAD model the choices are to use a NURBS geometry generated from CAD modelling software, where the position of the NURBS control points are the optimisation variables [2] or to use the feature based CAD model with all of the construction history to preserve the design intent [3]. The main advantage of using the feature based model is that the optimized model produced can be directly used for the downstream applications including manufacturing and process planning.
This paper presents an approach for optimization based on the feature based CAD model, which uses CAD parameters defining the features in the model geometry as the design variables. In order to capture the CAD surface movement with respect to the change in design variable, the “Parametric Design Velocity” is calculated, which is defined as the movement of the CAD model boundary in the normal direction due to a change in the parameter value.
The approach presented here for calculating the design velocities represents an advancement in terms of capability and robustness of that described by Robinson et al. [3]. The process can be easily integrated to most industrial optimisation workflows and is immune to the topology and labelling issues highlighted by other CAD based optimisation processes. It considers every continuous (“real value”) parameter type as an optimisation variable, and it can be adapted to work with any CAD modelling software, as long as it has an API which provides access to the values of the parameters which control the model shape and allows the model geometry to be exported. To calculate the movement of the boundary the methodology employs finite differences on the shape of the 3D CAD models before and after the parameter perturbation. The implementation procedure includes calculating the geometrical movement along a normal direction between two discrete representations of the original and perturbed geometry respectively. Parametric design velocities can then be directly linked with adjoint surface sensitivities to extract the gradients to use in a gradient-based optimization algorithm.
The optimisation of a flow optimisation problem is presented, in which the power dissipation of the flow in an automotive air duct is to be reduced by changing the parameters of the CAD geometry created in CATIA V5. The flow sensitivities are computed with the continuous adjoint method for a laminar and turbulent flow [4] and are combined with the parametric design velocities to compute the cost function gradients. A line-search algorithm is then used to update the design variables and proceed further with optimisation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present document deals with the optimization of shape of aerodynamic profiles -- The objective is to reduce the drag coefficient on a given profile without penalising the lift coefficient -- A set of control points defining the geometry are passed and parameterized as a B-Spline curve -- These points are modified automatically by means of CFD analysis -- A given shape is defined by an user and a valid volumetric CFD domain is constructed from this planar data and a set of user-defined parameters -- The construction process involves the usage of 2D and 3D meshing algorithms that were coupled into own- code -- The volume of air surrounding the airfoil and mesh quality are also parametrically defined -- Some standard NACA profiles were used by obtaining first its control points in order to test the algorithm -- Navier-Stokes equations were solved for turbulent, steady-state ow of compressible uids using the k-epsilon model and SIMPLE algorithm -- In order to obtain data for the optimization process an utility to extract drag and lift data from the CFD simulation was added -- After a simulation is run drag and lift data are passed to the optimization process -- A gradient-based method using the steepest descent was implemented in order to define the magnitude and direction of the displacement of each control point -- The control points and other parameters defined as the design variables are iteratively modified in order to achieve an optimum -- Preliminary results on conceptual examples show a decrease in drag and a change in geometry that obeys to aerodynamic behavior principles

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The strut-and-tie models are widely used in certain types of structural elements in reinforced concrete and in regions with complexity of the stress state, called regions D, where the distribution of deformations in the cross section is not linear. This paper introduces a numerical technique to determine the strut-and-tie models using a variant of the classical Evolutionary Structural Optimization, which is called Smooth Evolutionary Structural Optimization. The basic idea of this technique is to identify the numerical flow of stresses generated in the structure, setting out in more technical and rational members of strut-and-tie, and to quantify their value for future structural design. This paper presents an index performance based on the evolutionary topology optimization method for automatically generating optimal strut-and-tie models in reinforced concrete structures with stress constraints. In the proposed approach, the element with the lowest Von Mises stress is calculated for element removal, while a performance index is used to monitor the evolutionary optimization process. Thus, a comparative analysis of the strut-and-tie models for beams is proposed with the presentation of examples from the literature that demonstrates the efficiency of this formulation. © 2013 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN]This works aims at assessing the acoustic efficiency of differente this noise barrier models. These designs frequently feature complex profiles and their implementarion in shape optimization processes may not always be easy in terms of determining their topological feasibility. A methodology to conduct both overall shape and top edge optimisations of thin cross section acoustic barriers by idealizing them as profiles with null boundary thickness is proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via Bézier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A genetic algorithm (GA) is employed for the multi-objective shape optimization of the nose of a high-speed train. Aerodynamic problems observed at high speeds become still more relevant when traveling along a tunnel. The objective is to minimize both the aerodynamic drag and the amplitude of the pressure gradient of the compression wave when a train enters a tunnel. The main drawback of GA is the large number of evaluations need in the optimization process. Metamodels-based optimization is considered to overcome such problem. As a result, an explicit relationship between pressure gradient and geometrical parameters is obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a computational method for eliminating severe stress concentration at the unsupported railhead ends in rail joints through innovative shape optimization of the contact zone, which is complex due to near field nonlinear contact. With a view to minimizing the computational efforts, hybrid genetic algorithm method coupled with parametric finite element has been developed and compared with the traditional genetic algorithm (GA). The shape of railhead top surface where the wheel contacts nonlinearly was optimized using the hybridized GA method. Comparative study of the optimal result and the search efficiency between the traditional and hybrid GA methods has shown that the hybridized GA provides the optimal shape in fewer computational cycles without losing accuracy. The method will be beneficial to solving complex engineering problems involving contact nonlinearity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

借助流体动力计算软件CFX和Matlab,对水下滑翔机器人载体外形进行设计和优化.通过对 4种载体方案的分析计算和运动仿真,最终得到了一种比较合理的外形方案.研究结果表明,采用CFX流体动力计算软件对于研究水下机器人载体的外形结构,尤其是在方案设计阶段在外形流体动力设计中具有重要的作用,可缩短研制周期、降低设计成本.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scholars in the world have been trying to find an effective analytic algorithm of multiple hole problems usually meet in engineering designs. Though some studies on circular or elliptic holes had been achieved under specific conditions, no efforts were made to any multiple hole problems that is most significant for engineering designs. The author has made further studies on any multiple hole problems, using complex variable function method and Schwarz alternating method. After solving a series of technological difficulties, the author obtains an effective analytic algorithm, and acquires stress field and displacement field with high accuracy, which can be conducted for arbitrary many iterations according to practical accuracy requirements. In addition, th solution of stress and displacement fields, even for multiple holes of complex shapes and smaller distances. Further, the author made preliminary studies on viscoelastic displacement solution for any double holes. In terms of the obtained displacement solution of any multiple holes, this paper studies displacement back-analysis for the excavations of two tunnels, and find that the back-analysis method is accurate. Additionally, the author presents the mathematical prove of inversion uniqueness for ground stresses, elastic modulus and Poisson ratio. The author believes that the accurate analytic algorithm provided in this paper will presents an effective way to stress and displacement analysis for any multiple hole problems, optimal arrangement of multiple holes, hole shape optimization of multiple holes, etc..

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an approach which enables new parameters to be added to a CAD model for optimization purposes. It aims to remove a common roadblock to CAD based optimization, where the parameterization of the model does not offer the shape sufficient flexibility for a truly optimized shape to be created. A technique has been developed which uses adjoint based sensitivity maps to predict
the sensitivity of performance to the addition to a model of four different feature types, allowing the feature providing the greatest benefit to be selected. The optimum position to add the feature is also discussed. It is anticipated that the approach could be used to iteratively add features to a model, providing greater flexibility to the shape of the model, and allowing the newly-added parameters to be used as design variables in a subsequent shape optimization.