969 resultados para Semiconductor nanocomposites
Resumo:
Epoxy-multiwall carbon nanotube nanocomposite thin films were prepared by spin casting. High power air plasma was used to preferentially etch a coating of epoxy and expose the underlying carbon nanotube network. Scanning electron microscopy (SEM) examination revealed well distributed and spatially connected carbon nanotube network in both the longitudinal direction (plasma etched surface) and traverse direction (through-thickness fractured surface). Topographical examination and conductive mode imaging of the plasma etched surface using atomic force microscope (AFM) in the contact mode enabled direct imaging of topography and current maps of the embedded carbon nanotube network. Bundles consisting of at least three single carbon nanotubes form part of the percolating network observed under high resolution current maps. Predominantly non-ohmic response is obtained in this study; behaviour attributed to less than effective polymer material removal when using air plasma etching.
Resumo:
A series of solid strong acid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid strong acid counterparts were characterised by a variety of techniques including 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR), scanned electronic microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Nitrogen adsorption and infrared emission spectroscopy (IES). NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained solid acids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia.
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.
Resumo:
Thin films of expoxy nanocomposites modified by multiwall carbon nanotubes (MWCNTs) were prepared by shear mixing and spin casting. The electrical behaviour and its dependence with temperature between 243 and 353 degrees Kelvin were characterized by measuring the direct current (DC) conductivity. Depending on the fabrication process, both linear and non-linear relationships between conductivity and temperature were observed. In addition, the thermal history also played a role in dictating the conductivity. The implications of these observations for potential application of these files as strain sensors are discussed.
Resumo:
Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with improved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer nanocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, electrodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed.
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Graphene, one of the allotropes (diamond, carbon nanotube, and fullerene) of carbon, is a monolayer of honeycomb lattice of carbon atoms discovered in 2004. The Nobel Prize in Physics 2010 was awarded to Andre Geim and Konstantin Novoselov for their ground breaking experiments on the twodimensional graphene [1]. Since its discovery, the research communities have shown a lot of interest in this novel material owing to its unique properties. As shown in Figure 1, the number of publications on graphene has dramatically increased in recent years. It has been confirmed that graphene possesses very peculiar electrical properties such as anomalous quantum hall effect, and high electron mobility at room temperature (250000 cm2/Vs). Graphene is also one of the stiffest (modulus ~1 TPa) and strongest (strength ~100 GPa) materials. In addition, it has exceptional thermal conductivity (5000 Wm-1K-1). Based on these exceptional properties, graphene has found its applications in various fields such as field effect devices, sensors, electrodes, solar cells, energy storage devices and nanocomposites. Only adding 1 volume per cent graphene into polymer (e.g. polystyrene), the nanocomposite has a conductivity of ~0.1 Sm-1 [2], sufficient for many electrical applications. Significant improvement in strength, fracture toughness and fatigue strength has also been achieved in these nanocomposites [3-5]. Therefore, graphene-polymer nanocomposites have demonstrated a great potential to serve as next generation functional or structural materials.
Resumo:
Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.