992 resultados para Schottky contacts


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (R-D-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic R-D-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a crossover region of width, DT, within which there is a large negative temperature coefficient of resistance. The R-D-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, R-D responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H-2) at the interface. A theoretical model is developed to simulate the R-D-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental R-D-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime of application is limited to a relatively narrow range (DT) for a given type of diode, the alternative methodology is of universal applicability to all metal-semiconductor combinations forming Schottky contacts. (C) 2015 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A freestanding conducting polymer plate with one side forming a Schottky contact and the other side an Ohmic contact with two different metal electrodes can generate a DC voltage with an output current density as high as 218.6 μA cm(-2) upon mechanical deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resistivity of hydrothermally grown ZnO single crystals increased from similar to 10(3) Omega cm to similar to 10(6) Omega cm after 1.8 MeV electron irradiation with a fluence of similar to 10(16) cm(-2), and to similar to 10(9) Omega cm as the fluence increased to similar to 10(18) cm(-2). Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 10(18) cm(-2), the normalized TSC signal increased by a factor of similar to 100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 degrees C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(110) ZnO/(001) Nb-1 wt %-doped SrTiO3 n-n type heteroepitaxial junctions were fabricated using the pulse laser deposition method. A diodelike current behavior was observed. Different from conventional p-n junctions or Schottky diodes, the diffusion voltage was found to increase with temperature. At all temperatures, the forward current was perfectly fitted on the thermionic emission model. The band bending at the interface can qualitatively explain our results, and the extracted high ideality factor at low temperatures, as well as large saturation currents, is ascribed to the deep-level-assisted tunneling current through the junction. (C) 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the measured capacitance- voltage curves of Ni Schottky contacts with different areas on strained AlGaN/ GaN heterostructures and the current- voltage characteristics for the AlGaN/ GaN heterostructure field- effect transistors at low drain- source voltage, we found that the two- dimensional electron gas (2DEG) electron mobility increased as the Ni Schottky contact area increased. When the gate bias increased from negative to positive, the 2DEG electron mobility for the samples increased monotonically except for the sample with the largest Ni Schottky contact area. A new scattering mechanism is proposed, which is based on the polarization Coulomb field scattering related to the strain variation of the AlGaN barrier layer. (C) 2007 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The novel design of a silicon optical switch on the mechanism of a reverse p-n junction is proposed. The figuration of contact regions at slab waveguides and the ion implantation technology for creation of junctions are employed in the new design. The two-layer rib structure is helpful for reduction of optical absorption losses induced by metal and heavily-doped contact. And more, simulation results show that the index modulation efficiency of Mach-Zehnder interferometer enhances as the concentrations of dopants in junctions increase, while the trade-off of absorption loss is less than 3 dB/mu m. The phase shift reaches about 5 x 10(-4) pi/mu m at a reverse bias of 10V with the response time of about 0.2ns. The preliminary experimental results are presented. The frequency bandwidth of modulation operation can arrive in the range of GHz. However, heavily-doped contacts have an important effect on pulse response of these switches. While the contact region is not heavily-doped, that means metal electrodes have schottky contacts with p-n junctions, the operation bandwidth of the switch is limited to about 1GHz. For faster response, the heavily-doped contacts must be considered in the design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report on the study of nano-crack formation in Al1−xInxN/AlN/GaN heterostructures, on its association with composition fluctuation and on its local electrical properties. It is shown here that indium segregation at nano-cracks and threading dislocations originating from the non-pseudomorphic AlN interlayer could be the cause of the high reverse-bias gate leakage current of Ni/Au Schottky contacts on Al1−xInxN/AlN/GaN heterostructures and significantly affects the contact rectifying behavior. Segregation of indium around crack tips in Al1−xInxN acting as conductive paths was assessed with conductive atomic force microscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate the fabrication and operation of a carbon nanotube (CNT) based Schottky diode by using a Pd contact (high-work-function metal) and an Al contact (low-work-function metal) at the two ends of a single-wall CNT. We show that it is possible to tune the rectification current-voltage (I-V) characteristics of the CNT through the use of a back gate. In contrast to standard back gate field-effect transistors (FET) using same-metal source drain contacts, the asymmetrically contacted CNT operates as a directionally dependent CNT FET when gated. While measuring at source-drain reverse bias, the device displays semiconducting characteristics whereas at forward bias, the device is nonsemiconducting. © 2005 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

I. HgSe is deposited on various semiconductors, forming a semimetal/semiconductor "Schottky barrier" structure. Polycrystalline, evaporated HgSe produces larger Schottky barrier heights on n-type semiconductors than does Au, the most electronegative of the elemental metals. The barrier heights are about 0.5 eV greater than those of Au on ionic semiconductors such as ZnS, and 0.1 to 0.2 eV greater for more covalently bonded semiconductors. A novel structure,which is both a lattice matched heterostructure and a Schottky barrier, is fabricated by epitaxial growth of HgSe on CdSe using hydrogen transport CVD. The Schottky barrier height for this structure is 0.73 ± 0.02 eV, as measured by the photoresponse method. This uncertainty is unusually small; and the magnitude is greater by about a quarter volt than is achievable with Au, in qualitative agreement with ionization potential arguments.

II . The Schottky barrier height of Au on chemically etched n-Ga1-x AlxAs was measured as a function of x. As x increases, the barrier height rises to a value of about 1.2 eV at x ≈ 0.45 , then decreases to about 1.0 eV as x approaches 0.83. The barrier height deviates in a linear way from the value predicted by the "common anion" rule as the AlAs mole fraction increases. This behavior is related to chemical reactivity of the Ga1-x AlxAs surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evans D A, Roberts O R, Vearey-Roberts A R, Langstaff D P, Twitchen D J and Schwitters M 2007 Direct observation of Schottky to ohmic transition in Al-diamond contacts using realtime photoelectron spectroscopy Appl. Phys. Lett. 91 132114 doi:10.1063/1.2790779

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour. (C) 2014 AIP Publishing LLC.