956 resultados para SLAM RGB-D SlamDunk Android 3D mobile
Resumo:
El projecte desenvolupat ha tractat l’estudi i disseny d’un motor 3D interactiu a la consola Game Boy Advance (GBA). La GBA disposa d’un processador ARM7TDMI a 16’78 Mhz i no disposa de operacions 3D per-hardware, és una consola lenta en comparació les que podem trobar al mercat d’avui en dia. Aquest treball, va partir de la construcció d’un prototipus ray-casting per-columna. Després, vàrem adaptar-lo a una estructura de portals i sectors. Més tard, es va introduir el mapeig de sostre/terra i de paisatges. Per últim, vàrem introduir efectes a la renderització per donar més realisme al recorregut del món, com il·luminació, objectes, etc. Tot i que es va estudiar l’arquitectura d’un motor eficient, no es tenia prou per arribar a tenir un motor interactiu. Una de les tasques més difícils va ser la part de optimització. Per aconseguir-ho s’ha hagut de substituir operacions a temps real costoses a temps de execució, replantejar parts de l’algorisme per fer-lo més eficient, entre altres
Resumo:
In this paper, we consider multiple-input multiple- output (MIMO) maximal ratio combining (MRC) systems and assess the system performance in terms of average symbol error probability (SEP), outage probability and ergodic capacity in double-correlated Rayleigh-and-Lognormal fading channels. In order to derive the receive and transmit correlation functions needed for the performance analysis, a three-dimensional (3D) MIMO mobile-to-mobile (M-to-M) channel model, which takes into account the effects of fast fading and shadowing is used. Numerical results are provided to show the effects of system parameters, such as maximum elevation angle of scatterers, orientation angle of antenna array in the x-y plane, angle between x-y plane and the antenna array orientation, and degree of scattering in the x-y plane, on the system performance.
Resumo:
For general home monitoring, a system should automatically interpret people’s actions. The system should be non-intrusive, and able to deal with a cluttered background, and loose clothes. An approach based on spatio-temporal local features and a Bag-of-Words (BoW) model is proposed for single-person action recognition from combined intensity and depth images. To restore the temporal structure lost in the traditional BoW method, a dynamic time alignment technique with temporal binning is applied in this work, which has not been previously implemented in the literature for human action recognition on depth imagery. A novel human action dataset with depth data has been created using two Microsoft Kinect sensors. The ReadingAct dataset contains 20 subjects and 19 actions for a total of 2340 videos. To investigate the effect of using depth images and the proposed method, testing was conducted on three depth datasets, and the proposed method was compared to traditional Bag-of-Words methods. Results showed that the proposed method improves recognition accuracy when adding depth to the conventional intensity data, and has advantages when dealing with long actions.
Resumo:
[ES]Las tecnologías principales que se han utilizado son la visión por computador y los sensores de rango, es decir, las características visuales y la profundidad. Sin embargo, la aparición de sensores RGBD más asequibles, como Kinect, permite su aplicación en estos escenarios. Se aborda la utilización en entornos de interior de sensores RGBD para escenarios donde las condiciones de iluminación pueden ser variables. Se adopta una configuración cenital en el acceso a un espacio, para preservar la privacidad y facilitar la detección y seguimiento de los objetos salientes que aparecen en el escenario mediante técnicas de sustracción de fondo. Los objetos detectados son modelados, pudiendo ser descritos según las características de apariencia y geométricas como el área y volumen.
Resumo:
[EN]The re-identification problem has been commonly accomplished using appearance features based on salient points and color information. In this paper, we focus on the possibilities that simple geometric features obtained from depth images captured with RGB-D cameras may offer for the task, particularly working under severe illumination conditions. The results achieved for different sets of simple geometric features extracted in a top-view setup seem to provide useful descriptors for the re-identification task, which can be integrated in an ambient intelligent environment as part of a sensor network.
Resumo:
[EN]Re-identi fication is commonly accomplished using appearance features based on salient points and color information. In this paper, we make an study on the use of di fferent features exclusively obtained from depth images captured with RGB-D cameras. The results achieved, using simple geometric features extracted in a top-view setup, seem to provide useful descriptors for the re-identi fication task.
Resumo:
An innovative background modeling technique that is able to accurately segment foreground regions in RGB-D imagery (RGB plus depth) has been presented in this paper. The technique is based on a Bayesian framework that efficiently fuses different sources of information to segment the foreground. In particular, the final segmentation is obtained by considering a prediction of the foreground regions, carried out by a novel Bayesian Network with a depth-based dynamic model, and, by considering two independent depth and color-based mixture of Gaussians background models. The efficient Bayesian combination of all these data reduces the noise and uncertainties introduced by the color and depth features and the corresponding models. As a result, more compact segmentations, and refined foreground object silhouettes are obtained. Experimental results with different databases suggest that the proposed technique outperforms existing state-of-the-art algorithms.
Resumo:
En esta tesis se presenta un análisis en profundidad de cómo se deben utilizar dos tipos de métodos directos, Lucas-Kanade e Inverse Compositional, en imágenes RGB-D y se analiza la capacidad y precisión de los mismos en una serie de experimentos sintéticos. Estos simulan imágenes RGB, imágenes de profundidad (D) e imágenes RGB-D para comprobar cómo se comportan en cada una de las combinaciones. Además, se analizan estos métodos sin ninguna técnica adicional que modifique el algoritmo original ni que lo apoye en su tarea de optimización tal y como sucede en la mayoría de los artículos encontrados en la literatura. Esto se hace con el fin de poder entender cuándo y por qué los métodos convergen o divergen para que así en el futuro cualquier interesado pueda aplicar los conocimientos adquiridos en esta tesis de forma práctica. Esta tesis debería ayudar al futuro interesado a decidir qué algoritmo conviene más en una determinada situación y debería también ayudarle a entender qué problemas le pueden dar estos algoritmos para poder poner el remedio más apropiado. Las técnicas adicionales que sirven de remedio para estos problemas quedan fuera de los contenidos que abarca esta tesis, sin embargo, sí se hace una revisión sobre ellas.---ABSTRACT---This thesis presents an in-depth analysis about how direct methods such as Lucas- Kanade and Inverse Compositional can be applied in RGB-D images. The capability and accuracy of these methods is also analyzed employing a series of synthetic experiments. These simulate the efects produced by RGB images, depth images and RGB-D images so that diferent combinations can be evaluated. Moreover, these methods are analyzed without using any additional technique that modifies the original algorithm or that aids the algorithm in its search for a global optima unlike most of the articles found in the literature. Our goal is to understand when and why do these methods converge or diverge so that in the future, the knowledge extracted from the results presented here can efectively help a potential implementer. After reading this thesis, the implementer should be able to decide which algorithm fits best for a particular task and should also know which are the problems that have to be addressed in each algorithm so that an appropriate correction is implemented using additional techniques. These additional techniques are outside the scope of this thesis, however, they are reviewed from the literature.
Resumo:
Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms.
Resumo:
Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only the visual information obtained from a camera to guide a robot from any robot pose to a desired one. However, IBVS requires the estimation of different parameters that cannot be obtained directly from the image. These parameters range from the intrinsic camera parameters (which can be obtained from a previous camera calibration), to the measured distance on the optical axis between the camera and visual features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The experiments prove that the computation of the depth value for each visual feature improves the system performance.
Resumo:
The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR), Taipei, Taiwan, August 29-31, 2012.
Resumo:
Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.
Resumo:
Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.