930 resultados para SLAM RGB-D SlamDunk Android 3D mobile
Resumo:
[EN]Re-identi fication is commonly accomplished using appearance features based on salient points and color information. In this paper, we make an study on the use of di fferent features exclusively obtained from depth images captured with RGB-D cameras. The results achieved, using simple geometric features extracted in a top-view setup, seem to provide useful descriptors for the re-identi fication task.
Resumo:
An innovative background modeling technique that is able to accurately segment foreground regions in RGB-D imagery (RGB plus depth) has been presented in this paper. The technique is based on a Bayesian framework that efficiently fuses different sources of information to segment the foreground. In particular, the final segmentation is obtained by considering a prediction of the foreground regions, carried out by a novel Bayesian Network with a depth-based dynamic model, and, by considering two independent depth and color-based mixture of Gaussians background models. The efficient Bayesian combination of all these data reduces the noise and uncertainties introduced by the color and depth features and the corresponding models. As a result, more compact segmentations, and refined foreground object silhouettes are obtained. Experimental results with different databases suggest that the proposed technique outperforms existing state-of-the-art algorithms.
Resumo:
En esta tesis se presenta un análisis en profundidad de cómo se deben utilizar dos tipos de métodos directos, Lucas-Kanade e Inverse Compositional, en imágenes RGB-D y se analiza la capacidad y precisión de los mismos en una serie de experimentos sintéticos. Estos simulan imágenes RGB, imágenes de profundidad (D) e imágenes RGB-D para comprobar cómo se comportan en cada una de las combinaciones. Además, se analizan estos métodos sin ninguna técnica adicional que modifique el algoritmo original ni que lo apoye en su tarea de optimización tal y como sucede en la mayoría de los artículos encontrados en la literatura. Esto se hace con el fin de poder entender cuándo y por qué los métodos convergen o divergen para que así en el futuro cualquier interesado pueda aplicar los conocimientos adquiridos en esta tesis de forma práctica. Esta tesis debería ayudar al futuro interesado a decidir qué algoritmo conviene más en una determinada situación y debería también ayudarle a entender qué problemas le pueden dar estos algoritmos para poder poner el remedio más apropiado. Las técnicas adicionales que sirven de remedio para estos problemas quedan fuera de los contenidos que abarca esta tesis, sin embargo, sí se hace una revisión sobre ellas.---ABSTRACT---This thesis presents an in-depth analysis about how direct methods such as Lucas- Kanade and Inverse Compositional can be applied in RGB-D images. The capability and accuracy of these methods is also analyzed employing a series of synthetic experiments. These simulate the efects produced by RGB images, depth images and RGB-D images so that diferent combinations can be evaluated. Moreover, these methods are analyzed without using any additional technique that modifies the original algorithm or that aids the algorithm in its search for a global optima unlike most of the articles found in the literature. Our goal is to understand when and why do these methods converge or diverge so that in the future, the knowledge extracted from the results presented here can efectively help a potential implementer. After reading this thesis, the implementer should be able to decide which algorithm fits best for a particular task and should also know which are the problems that have to be addressed in each algorithm so that an appropriate correction is implemented using additional techniques. These additional techniques are outside the scope of this thesis, however, they are reviewed from the literature.
Resumo:
Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms.
Resumo:
Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only the visual information obtained from a camera to guide a robot from any robot pose to a desired one. However, IBVS requires the estimation of different parameters that cannot be obtained directly from the image. These parameters range from the intrinsic camera parameters (which can be obtained from a previous camera calibration), to the measured distance on the optical axis between the camera and visual features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The experiments prove that the computation of the depth value for each visual feature improves the system performance.
Resumo:
The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR), Taipei, Taiwan, August 29-31, 2012.
Resumo:
Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.
Resumo:
The present thesis is focuses on the problem of Simultaneous Localisation and Mapping (SLAM) using only visual data (VSLAM). This means to concurrently estimate the position of a moving camera and to create a consistent map of the environment. Since implementing a whole VSLAM system is out of the scope of a degree thesis, the main aim is to improve an existing visual SLAM system by complementing the commonly used point features with straight line primitives. This enables more accurate localization in environments with few feature points, like corridors. As a foundation for the project, ScaViSLAM by Strasdat et al. is used, which is a state-of-the-art real-time visual SLAM framework. Since it currently only supports Stereo and RGB-D systems, implementing a Monocular approach will be researched as well as an integration of it as a ROS package in order to deploy it on a mobile robot. For the experimental results, the Care-O-bot service robot developed by Fraunhofer IPA will be used.
Resumo:
Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.
Resumo:
Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.
Resumo:
Jakina da informatika oso gai zabala dela. Horregatik, oro har, sistema informatikoen garatzaileak sistemaren osagai bakan batzuetaz soilik arduratzen dira. Proiektu honek hardwarearen eta softwarearen munduak uztartzea du helburu; hardware- eta softwareosagaiak dituen sistema bat sortu, behar diren osagai guztiak garatuz. Horretaz gain, garatutakoa erabilgarria izatea bilatu da, hau da, funtzio praktiko eta erreal bat edukitzea. Horretarako, Android eta Arduino plataformak aztertu dira: Android erabiltzaileari interfaze grafikoa eskaini eta elkarrekintza burutzeko erabili da; Arduino, berriz, hardwarearen kontrolatzailea izateko. Horrekin, eragingailuak kontrolatuz, time-lapseak egiteko sistema automatizatua garatu da; D-Lappse Android aplikazioarekin sistema kontrolatu daiteke eta dollyari aginduak bidali, argazki-sekuentziak era automatizatu batean egiteko.
Resumo:
Esta tesis se centra en desarrollo de tecnologías para la interacción hombre-robot en entornos nucleares de fusión. La problemática principal del sector de fusión nuclear radica en las condiciones ambientales tan extremas que hay en el interior del reactor, y la necesidad de que los equipos cumplan requisitos muy restrictivos para poder aguantar esos niveles de radiación, magnetismo, ultravacío, temperatura... Como no es viable la ejecución de tareas directamente por parte de humanos, habrá que utilizar dispositivos de manipulación remota para llevar a cabo los procesos de operación y mantenimiento. En las instalaciones de ITER es obligatorio tener un entorno controlado de extrema seguridad, que necesita de estándares validados. La definición y uso de protocolos es indispensable para regir su buen funcionamiento. Si nos centramos en la telemanipulación con algo grado de escalado, surge la necesidad de definir protocolos para sistemas abiertos que permitan la interacción entre equipos y dispositivos de diversa índole. En este contexto se plantea la definición del Protocolo de Teleoperación que permita la interconexión entre dispositivos maestros y esclavos de distinta tipología, pudiéndose comunicar bilateralmente entre sí y utilizar distintos algoritmos de control según la tarea a desempeñar. Este protocolo y su interconectividad se han puesto a prueba en la Plataforma Abierta de Teleoperación (P.A.T.) que se ha desarrollado e integrado en la ETSII UPM como una herramienta que permita probar, validar y realizar experimentos de telerrobótica. Actualmente, este Protocolo de Teleoperación se ha propuesto a través de AENOR al grupo ISO de Telerobotics como una solución válida al problema existente y se encuentra bajo revisión. Con el diseño de dicho protocolo se ha conseguido enlazar maestro y esclavo, sin embargo con los niveles de radiación tan altos que hay en ITER la electrónica del controlador no puede entrar dentro del tokamak. Por ello se propone que a través de una mínima electrónica convenientemente protegida se puedan multiplexar las señales de control que van a través del cableado umbilical desde el controlador hasta la base del robot. En este ejercicio teórico se demuestra la utilidad y viabilidad de utilizar este tipo de solución para reducir el volumen y peso del cableado umbilical en cifras aproximadas de un 90%, para ello hay que desarrollar una electrónica específica y con certificación RadHard para soportar los enormes niveles de radiación de ITER. Para este manipulador de tipo genérico y con ayuda de la Plataforma Abierta de Teleoperación, se ha desarrollado un algoritmo que mediante un sensor de fuerza/par y una IMU colocados en la muñeca del robot, y convenientemente protegidos ante la radiación, permiten calcular las fuerzas e inercias que produce la carga, esto es necesario para poder transmitirle al operador unas fuerzas escaladas, y que pueda sentir la carga que manipula, y no otras fuerzas que puedan influir en el esclavo remoto, como ocurre con otras técnicas de estimación de fuerzas. Como el blindaje de los sensores no debe ser grande ni pesado, habrá que destinar este tipo de tecnología a las tareas de mantenimiento de las paradas programadas de ITER, que es cuando los niveles de radiación están en sus valores mínimos. Por otro lado para que el operador sienta lo más fielmente posible la fuerza de carga se ha desarrollado una electrónica que mediante el control en corriente de los motores permita realizar un control en fuerza a partir de la caracterización de los motores del maestro. Además para aumentar la percepción del operador se han realizado unos experimentos que demuestran que al aplicar estímulos multimodales (visuales, auditivos y hápticos) aumenta su inmersión y el rendimiento en la consecución de la tarea puesto que influyen directamente en su capacidad de respuesta. Finalmente, y en referencia a la realimentación visual del operador, en ITER se trabaja con cámaras situadas en localizaciones estratégicas, si bien el humano cuando manipula objetos hace uso de su visión binocular cambiando constantemente el punto de vista adecuándose a las necesidades visuales de cada momento durante el desarrollo de la tarea. Por ello, se ha realizado una reconstrucción tridimensional del espacio de la tarea a partir de una cámara-sensor RGB-D, lo cual nos permite obtener un punto de vista binocular virtual móvil a partir de una cámara situada en un punto fijo que se puede proyectar en un dispositivo de visualización 3D para que el operador pueda variar el punto de vista estereoscópico según sus preferencias. La correcta integración de estas tecnologías para la interacción hombre-robot en la P.A.T. ha permitido validar mediante pruebas y experimentos para verificar su utilidad en la aplicación práctica de la telemanipulación con alto grado de escalado en entornos nucleares de fusión. Abstract This thesis focuses on developing technologies for human-robot interaction in nuclear fusion environments. The main problem of nuclear fusion sector resides in such extreme environmental conditions existing in the hot-cell, leading to very restrictive requirements for equipment in order to deal with these high levels of radiation, magnetism, ultravacuum, temperature... Since it is not feasible to carry out tasks directly by humans, we must use remote handling devices for accomplishing operation and maintenance processes. In ITER facilities it is mandatory to have a controlled environment of extreme safety and security with validated standards. The definition and use of protocols is essential to govern its operation. Focusing on Remote Handling with some degree of escalation, protocols must be defined for open systems to allow interaction among different kind of equipment and several multifunctional devices. In this context, a Teleoperation Protocol definition enables interconnection between master and slave devices from different typologies, being able to communicate bilaterally one each other and using different control algorithms depending on the task to perform. This protocol and its interconnectivity have been tested in the Teleoperation Open Platform (T.O.P.) that has been developed and integrated in the ETSII UPM as a tool to test, validate and conduct experiments in Telerobotics. Currently, this protocol has been proposed for Teleoperation through AENOR to the ISO Telerobotics group as a valid solution to the existing problem, and it is under review. Master and slave connection has been achieved with this protocol design, however with such high radiation levels in ITER, the controller electronics cannot enter inside the tokamak. Therefore it is proposed a multiplexed electronic board, that through suitable and RadHard protection processes, to transmit control signals through an umbilical cable from the controller to the robot base. In this theoretical exercise the utility and feasibility of using this type of solution reduce the volume and weight of the umbilical wiring approximate 90% less, although it is necessary to develop specific electronic hardware and validate in RadHard qualifications in order to handle huge levels of ITER radiation. Using generic manipulators does not allow to implement regular sensors for force feedback in ITER conditions. In this line of research, an algorithm to calculate the forces and inertia produced by the load has been developed using a force/torque sensor and IMU, both conveniently protected against radiation and placed on the robot wrist. Scaled forces should be transmitted to the operator, feeling load forces but not other undesirable forces in slave system as those resulting from other force estimation techniques. Since shielding of the sensors should not be large and heavy, it will be necessary to allocate this type of technology for programmed maintenance periods of ITER, when radiation levels are at their lowest levels. Moreover, the operator perception needs to feel load forces as accurate as possible, so some current control electronics were developed to perform a force control of master joint motors going through a correct motor characterization. In addition to increase the perception of the operator, some experiments were conducted to demonstrate applying multimodal stimuli (visual, auditory and haptic) increases immersion and performance in achieving the task since it is directly correlated with response time. Finally, referring to the visual feedback to the operator in ITER, it is usual to work with 2D cameras in strategic locations, while humans use binocular vision in direct object manipulation, constantly changing the point of view adapting it to the visual needs for performing manipulation during task procedures. In this line a three-dimensional reconstruction of non-structured scenarios has been developed using RGB-D sensor instead of cameras in the remote environment. Thus a mobile virtual binocular point of view could be generated from a camera at a fixed point, projecting stereoscopic images in 3D display device according to operator preferences. The successful integration of these technologies for human-robot interaction in the T.O.P., and validating them through tests and experiments, verify its usefulness in practical application of high scaling remote handling at nuclear fusion environments.
Resumo:
Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, μ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the μ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.