816 resultados para SKELETON
Resumo:
211 p. :il.
Resumo:
Elucidating the intricate relationship between brain structure and function, both in healthy and pathological conditions, is a key challenge for modern neuroscience. Recent progress in neuroimaging has helped advance our understanding of this important issue, with diffusion images providing information about structural connectivity (SC) and functional magnetic resonance imaging shedding light on resting state functional connectivity (rsFC). Here, we adopt a systems approach, relying on modular hierarchical clustering, to study together SC and rsFC datasets gathered independently from healthy human subjects. Our novel approach allows us to find a common skeleton shared by structure and function from which a new, optimal, brain partition can be extracted. We describe the emerging common structure-function modules (SFMs) in detail and compare them with commonly employed anatomical or functional parcellations. Our results underline the strong correspondence between brain structure and resting-state dynamics as well as the emerging coherent organization of the human brain.
Resumo:
Some 1R,4R-2-(4-phenylbenzylidene)-p-menthane-3-one derivatives containing the ether or ester linking group between benzene rings of the arylidene fragment have been studied as chiral dopants in ferroelectric liquid crystal systems based on the eutectic mixture (1:1) of two phenylbenzoate derivatives CmH2m+1OC6H4COOC6 H4OCnH2n+1 (n = 6; m = 8, 10). The ferroelectric properties of these compositions (spontaneous polarization, rotation viscosity, smectic tilt angle as well as quantitative characteristics of their concentration dependences) were compared with those for systems including chiral dopants containing no linking group. Ferroelectric parameters of the induced ferroelectric compositions studied have been shown to depend essentially on the presence of the linking group between benzene rings and its nature as well as on the number of the benzene rings in the rigid molecular core of the chiral dopants used. For all ferroelectric liquid crystal systems studied, the influence of the chiral dopants on the thermal stability of N*, SmA and SmC* mesophases has been quantified. The influence of the linking group nature in the dopant molecules on the characteristics of the systems studied is discussed taking into account results of the conformational analysis carried out by the semi-empirical AM1 and PM3 methods.
Resumo:
Two new highly oxygenated nortriterpenoids with a unique norcycloartane skeleton, micrandilactones B and C (1-2), were isolated from Schisandra micrantha; micrandilactone C ( 2) exhibited an EC50 value of 7.71 mu g/mL (SI > 25.94) against HIV-1 replication with minimal cytotoxicity, and the potent anti-HIV-1 activity and unique structural features of 2 make it a promising lead for therapeutic development of a new generation of anti-HIV drug.
Resumo:
Lancifodilactone F (1), possessing an unprecedented rearranged pentanortriterpenoid backbone derived from cycloartane, was isolated from the leaves and stems of Schisandra lancifolia (Rehd. et Wils) A. C. Smith. Its structure was established by comprehensive NMR and MS spectroscopic analysis, coupled with single-crystal X-ray experiment. Compound 1 exerted minimal cytotoxicity against C8166 cells (CC50 > 200 mu g/mL) and showed anti-HIV activity with EC50 = 20.69 +/- 3.31 mu g/mL and a selectivity index > 6.62.
Resumo:
Przewalskin A (1), a novel C-23 terpenoid with a 6/6/7 carbon ring skeleton, was isolated from Salvia przewalskii. Its structure was determined by comprehensive 1D NMR, 2D NMR, and MS spectroscopic analysis and subsequently confirmed by a single-crystal X
Resumo:
9 alpha,13 alpha-Dihydroxylisopropylidenylisatisine A (1), which was derived from isatisine A (2) and possessed an unprecedented fused pentacyclic skeleton, was isolated from the leaves of Isatis indigotica Fort. The structure and relative configuration w
Resumo:
[GRAPHIC] Przewalskin B (1), a novel diterpenoid possessing a unique skeleton, was isolated from a Chinese medicinal plant Salvia przewalskii. Its structure and relative stereochemistry were elucidated by extensive NMR analysis and a single-crystal X-ray
Resumo:
Schilancidilactones A (1) and B (2). two novel tetranortriterpenoids possessing an unprecedented skeleton, have been isolated from the stems of Schisandra lancifolia. Their structures were elucidated on the basis of extensive spectroscopic analysis. The r
Resumo:
Present study deals with the family Soleidae (common sole) Euryglossa orientalis (Bl. & Schn.) of the order Pleuronectiformis from Karachi coast. Separate equation (regression line) for describing the length weight relationships for male and female combined are justified. Allometric studies were made on skeleton weight relative to the length and the weight of the fish. The regression equation 'a' and 'b' values of standard length/skeleton weight and body weight/skeleton weight are statistically significant.
Resumo:
Insulin-like growth factor-binding protein (IGFBP)-3 is the major insulin-like growth factor (IGF) carrier protein in the bloodstream. IGFBP-3 prolongs the half-life of circulating IGFs and prevents their potential hypo-glycemic effect. IGFBP-3 is also expressed in many peripheral tissues in fetal and adult stages. In vitro, IGFBP-3 can inhibit or potentiate IGF actions and even possesses IGF-independent activities, suggesting that local IGFBP-3 may also have paracrine/autocrine function(s). The in vivo function of IGFBP-3, however, is unclear. In this study, we elucidate the developmental role of IGFBP-3 using the zebrafish model. IGFBP-3 mRNA expression is first detected in the migrating cranial neural crest cells and subsequently in pharyngeal arches in zebrafish embryos. IGFBP-3 mRNA is also persistently expressed in the developing inner ears. To determine the role of IGFBP-3 in these tissues, we ablated the IGFBP-3 gene product using morpholino-modified antisense oligonucleotides (MOs). The IGFBP-3 knocked down embryos had delayed pharyngeal skeleton morphogenesis and greatly reduced pharyngeal cartilage differentiation. Knockdown of IGFBP-3 also significantly decreased inner ear size and disrupted hair cell differentiation and semicircular canal formation. Furthermore, reintroduction of a MO-resistant form of IGFBP-3 "rescued" the MO-induced defects. These findings suggest that IGFBP-3 plays an important role in regulating pharyngeal cartilage and inner car development and growth in zebrafish.
Resumo:
Sponges (phylum Porifera) had been considered as an enigmatic phylum, prior to the analysis of their genetic repertoire/tool kit. Already with the isolation of the first adhesion molecule, galectin, it became clear that the sequences of sponge cell surface receptors and of molecules forming the intracellular signal transduction pathways triggered by them, share high similarity with those identified in other metazoan phyla. These studies demonstrated that all metazoan phyla, including Porifera, originate from one common ancestor, the Urmetazoa. The sponges evolved prior to the Ediacaran-Cambrian boundary (542 million years ago [myr]) during two major "snowball earth events", the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr). During this period the ocean was richer in silica due to the silicate weathering. The oldest sponge fossils (Hexactinellida) have been described from Australia, China and Mongolia and are thought to have existed coeval with the diverse Ediacara fauna. Only little younger are the fossils discovered in the Sansha section in Hunan (Early Cambrian; China). It has been proposed that only the sponges possessed the genetic repertoire to cope with the adverse conditions, e.g. temperature-protection molecules or proteins protecting them against ultraviolet radiation. The skeletal elements of the Hexactinellida (model organisms Monorhaphis chuni and Monorhaphis intermedia or Hyalonema sieboldi) and Demospongiae (models Suberites domuncula and Geodia cydonium), the spicules, are formed enzymatically by the anabolic enzyme silicatein and the catabolic enzyme silicase. Both, the spicules of Hexactinellida and of Demospongiae, comprise a central axial canal and an axial filament which harbors the silicatein. After intracellular formation of the first lamella around the channel and the subsequent extracellular apposition of further lamellae the spicules are completed in a net formed of collagen fibers. The data summarized here substantiate that with the finding of silicatein a new aera in the field of bio/inorganic chemistry started. For the first time strategies could be formulated and experimentally proven that allow the formation/synthesis of inorganic structures by organic molecules. These findings are not only of importance for the further understanding of basic pathways in the body plan formation of sponges but also of eminent importance for applied/commercial processes in a sustainable use of biomolecules for novel bio/inorganic materials.
Resumo:
Two novel rearranged trachylobane diterpenoids, designated as wallichanol A (2) and wallichanol B (3), consisting of an unprecedented pentacyclic skeleton named wallichane with a cyclobutane ring, and a new ent-trachylobane diterpenoid, 3-oxo-ent-trachyloban-17-oic acid (1), were isolated from the roots of Euphorbia wallichii. Their structures were elucidated by comprehensive analysis of 2D-NMR spectroscopic data, with the stereochemistry of 1 confirmed by X-ray crystallographic study. All of these compounds potently block osteoclastogenesis in vitro, suggesting a potential therapeutic application in prevention of osteoporosis.