975 resultados para SINGLET MOLECULAR OXYGEN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new epoxidation system is reported in this communication. Heteropolyoxometalates catalyst/recyclable reductant 2-ethylanthrahydroquinone/O-2 is employed for epoxidation of olefins. The reductant can be regenerated by catalytic hydrogenation without consumption. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co3O4 nanocrystals with average particle sizes of 30 and 50 run were synthesized using cobalt nitrate as precursor, and were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. Catalytic oxidation of cyclohexane with molecular oxygen was studied over Co3O4 nanocrystals. These catalysts showed obviously higher activities as compared to Co3O4 prepared by the conventional methods, Co3O4/Al2O3, or homogeneous cobalt catalyst under comparable reaction conditions. The 89.1% selectivity to cyclohexanol and cyclohexanone at 7.6% conversion of cyclohexane was realized over 50 nm sized Co3O4 nanocrystals at 393 K for 6 h. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted the liquid phase oxidation of toluene with molecular oxygen over heterogeneous catalysts of copper-based binary metal oxides. Among the copper-based binary metal oxides, iron-copper binary oxide (Fe/Cu = 0.3 atomic ratio) was found to be the best catalyst. In the presence of pyridine, overoxidation of benzaldehyde to benzoic acid was partially prevented. As a result, highly selective formation of benzaldehyde (86% selectivity) was observed after 2 h of reaction (7% conversion of toluene) at 463 K and 1.0 MPa of oxygen atmosphere in the presence of pyridine. These catalytic performances were similar or better than those in the gas phase oxidation of toluene at reaction temperatures higher than 473 K and under 0.5-2.5 MPa. It was suggested from competitive adsorption measurements that pyridine could reduce the adsorption of benzaldehyde. At a long reaction time of 4 It, the conversion increased to 25% and benzoic acid became the predominant reaction product (72% selectivity) in the absence of pyridine. The yield of benzoic acid was higher than that in the Snia-Viscosa process, which requires corrosive halogen ions and acidic solvents in the homogeneous reaction media. The catalyst was easily recycled by simple filtration and reusable after washing and drying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of oxygen molecules is an important issue in the gold-catalyzed partial oxidation of alcohols in aqueous solution. The complexity of the solution arising from a large number of solvent molecules makes it difficult to study the reaction in the system. In this work, O-2 activation on an Au catalyst is investigated using an effective approach to estimate the reaction barriers in the presence of solvent. Our calculations show that O-2 can be activated, undergoing OOH* in the presence of water molecules. The OOH* can readily be formed on Au(211) via four possible pathways with almost equivalent free energy barriers at the aqueous-solid interface: the direct or indirect activation of O-2 by surface hydrogen or the hydrolysis of O-2 following a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. Among them, the Eley-Rideal mechanism may be slightly more favorable due to the restriction of the low coverage of surface H on Au(211) in the other mechanisms. The results shed light on the importance of water molecules on the activation of oxygen in gold-catalyzed systems. Solvent is found to facilitate the oxygen activation process mainly by offering extra electrons and stabilizing the transition states. A correlation between the energy barrier and the negative charge of the reaction center is found. The activation barrier is substantially reduced by the aqueous environment, in which the first solvation shell plays the most important role in the barrier reduction. Our approach may be useful for estimating the reaction barriers in aqueous systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective catalytic oxidation of alcohols over a mixture of copper(l) chloride and a number of linear 'linker-less' or 'branched' poly(ethylene glycol)-supported nitroxyl radicals of the 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) family as a catalyst system has been investigated in the presence of molecular oxygen in a batch reactor. It is found that the activity profile of the polymer-supported nitroxyl radicals is in good agreement with that of low-molecular weight nitroxyl catalysts, for example, allylic and benzylic alcohols are oxidised faster than aliphatic alcohols. The oxidations can be tuned to be highly selective such that aldehydes are the only oxidation products observed in the oxidation of primary alcohols and the oxidations of secondary alcohols yield the corresponding ketones. A strong structural effect of the polymeric nitroxyl species on catalytic activity that is dependent upon their spatial orientation of the nitroxyl radicals is particularly noted. The new soluble macromolecular catalysts can be recovered readily from the reaction mixture by solvent precipitation and filtration. In addition, the recycled catalysts demonstrate a similar selectivity with only a small decrease in activity compared to the fresh catalyst even after five repetitive cycles. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using combination of Mn-Co transition metal species with N-hydroxyphthalimide as a catalyst for one-step oxidation of cyclohexane with molecular oxygen in acetic acid at 353 K can give more than 95% selectivity towards oxygenated products with adipic acid as a major product at a high conversion (ca. 78%). A turnover number of 74 for this partial oxidation are also recorded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O2, in the coma of Jupiter family comet 67P/Churyumov-Gerasimenko of O2/H2O = 3.80 ± 0.85%. It could be shown that O2 is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O2 abundance is peculiar to comet 67P/Churyumov-Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O2 of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O2 might be a rather common and abundant parent species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system IrX(CO)[P(C6H5)3]3 in benzene solution adds molecular oxygen reversibly if X is chlorine and irreversibly if X is iodine. The crystal structure of the complex IrIO 2(CO)[P(C6H5)3]2 · CH2Cl2 is reported here and compared with a previous study of the structure of IrClO2(CO)[P(C6H 5)3]2. The O-O bond length is 1.47 ± 0.02 angstroms in the irreversibly oxygenated iodo-compound and 1.30 ± 0.03 angstroms in the reversibly oxygenated chlorocompound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have indicated that Western diets are related to an increase in a series of malignancies. Among the compounds that are credited for this toxic effect are heme and lipid peroxides. We evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxides (LAOOH) on a series of toxicological endpoints, such as cytotoxicity, redox status, lipid peroxidation, and DNA damage. We demonstrated that the preincubation of SW480 cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, malonaldehyde formation, and DNA fragmentation and that these effects were related to the peroxide group and the heme present in Hb. Furthermore, Hb and LAOOH alone exerted a toxic effect on the endpoints assayed only at concentrations higher than 100 mu M. We were also able to show that SW480 cells presented a higher level of the modified DNA bases 8-oxo-7,8-dihydro-2`-deoxyguanosine and 1,N(2)-etheno-2`-deoxyguanosine compared to the control. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlated with DNA oxidation, as measured as EndoIII- and Fpg-sensitive sites. Thus, Hb from either red meat or bowel bleeding could act as an enhancer of fatty acid hydroperoxide genotoxicity, which contributes to the accumulation of DNA lesions in colon cancer cells. (C) 2011 Elsevier Inc. All rights reserved.