980 resultados para Revolution (composite resin)
Resumo:
Purpose: To evaluate the influence of surface treatments on microtensile bond strength of luting resin cements to fiber posts. Materials and Methods: Forty-two quartz fiber posts (Light Post, RTD) were divided into 7 groups (n = 6) according to the surface treatment. I and 11: experimental patented industrial treatment consisting of zirconium oxide coating and silanization (RTD); III: industrial treatment followed by adhesive application (XPBond, Dentsply Caulk); IV: adhesive (XPBond); V: adhesive (Prime&Bond NT, Dentsply Caulk); VI: silane (Calibra Silane, Dentsply Caulk); VII: no treatment. Adhesives were used in the self-curing mode. Two cements (Sealbond, RTD - group 1, and Calibra, Dentsply Caulk - groups 11 to VII) were applied on the posts to produce cylindrical specimens. Post/cement interfaces were evaluated under SEM. The surface of the industrially coated posts was examined using energy dispersive analysis by x-ray. Cylinders were cut to obtain microtensile sticks that were loaded in tension at a crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed using Kruskal-Wallis analysis of variance followed by Dunn`s multiple range test for post-hoc comparisons (p < 0.05). Weibull analysis was also performed. Results: The post/cement bond strength was significantly higher on fiber posts treated industrially (I: 23.14 +/- 8.05 MPa; II: 21.56 +/- 7.07 MPa; III: 22.37 +/- 7.00 MPa) or treated with XPBond adhesive (IV: 21.03 +/- 5.34 MPa) when compared to Prime&Bond NT application (V: 14.05 +/- 5.06 MPa), silanization (VI: 6.31 +/- 4.60 MPa) or no treatment (VII: 4.62 +/- 4.31) of conventional fiber posts (p < 0.001). Conclusion: The experimental industrial surface treatment and the adhesive application enhanced fiber post to resin cement interfacial strength. Industrial pretreatment may simplify the clinical luting procedure.
Resumo:
Objectives: The purpose of this in vitro study was to evaluate the Vickers hardness (VHN) of a Light Core (Bisco) composite resin after root reinforcement, according to the light exposure time, region of intracanal reinforcement and lateral distance from the light-transmitting fibre post. Methods: Forty-five 17-mm long roots were used. Twenty-four hours after obturation, the root canals were emptied to a depth of 12 mm and the root dentine was artificially flared to produce a 1 mm space between the fibre post and the canal walls. The roots were bulk restored with the composite resin, which was photoactivated through the post for 40 s (G1, control), 80 s (G2) or 120 s (G3). Twenty-four hours after post-cementation, the specimens were sectioned transversely into three slices at depths of 2, 6 and 10 mm, corresponding to the coronal, middle and apical regions of the reinforced root. Composite VHN was measured as the average of three indentations (100 g/15 s) in each region at lateral distances of 50, 200 and 350 mu m from the cement/post-interface. Results: Three-way analysis of variance (alpha = 0.05) indicated that the factors time, region and distance influenced the hardness and that the interaction time x region was statistically significant (p = 0.0193). Tukey`s test showed that the mean VHN values for G1 (76.37 +/- 8.58) and G2 (74.89 +/- 6.28) differed significantly from that for G3 (79.5 +/- 5.18). Conclusions: Composite resin hardness was significantly lower in deeper regions of root reinforcement and in lateral areas distant from the post. Overall, a light exposure time of 120 s provided higher composite hardness than the shorter times (40 and 80 s). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Dental oxide ceramics have been inspired by their biocompability and mechanical properties which have made durable all-ceramic structures possible. Clinical longevity of the prosthetic structures is dependent on effective bonding with luting cements. As the initial shear bond strength values can be comparable with several materials and procedures, long-term durability is affected by ageing. Aims of the current study were: to measure the shear bond strength of resin composite-to-ceramics and to evaluate the longevity of the bond; to analyze factors affecting the bond, with special emphasis on: the form of silicatization of the ceramic surface; form of silanization; type of resin primer and the effect of the type of the resin composite luting cement; the effect of ageing in water was studied regarding its effect to the endurance of the bond. Ceramic substrates were alumina and yttrium stabilized zirconia. Ceramic conditioning methods included tribochemical silicatization and use of two silane couplings agents. A commercial silane primer was used as a control silane. Various combinations of conditioning methods, primers and resin cements were tested. Bond strengths were measured by shear bond strength method. The longevity of the bond was generally studied by thermocycling the materials in water. Additionally, in one of the studies thermal cycling was compared with long-term water storaging. Results were analysed statistically with ANOVA and Weibull analysis. Tribochemical treatment utilizing air pressure of 150 kPa resulted shear bond strengths of 11.2 MPa to 18.4 MPa and air pressure of 450 kPa 18.2 MPa to 30.5 MPa, respectively. Thermocycling of 8000 cycles or four years water storaging both decreased shear bond strength values to a range of 3.8 MPa to 7.2 MPa whereas initial situation varied from 16.8. Mpa to 23.0 MPa. The silane used in studies had no statistical significance. The use of primers without 10-MDP resulted spontaneous debonding during thermocycling or shear bond strengths below 5 MPa. As conclusion, the results showed superior long-term bonding with primers containing 10-MDP. Silicatization with silanizing showed improved initial shear bond strength values which considerably decreased with ageing in water. Thermal cycling and water storing for up to four years played the major role in reduction of bond strength, which could be due to thermal fatigue of the bonding interface and hydrolytic degradation of the silane coupled interface.
Resumo:
Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm(2)), Jet Lite 4000 Plus (1230mW/cm(2)), and Ultralume Led 5 (790 mW/cm(2)) and immersion media were artificial saliva, Coke(R), tea and coffee, totaling 12 experimental groups. Specimens (10 mm X 2 mm) were immersed in each respective Solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37 degrees C +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon. potassium and phosphorus. For Coke(R), excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke(R) affected material`s surface more than did the other tested drinks. Microsc. Res. Tech. 73:176-181, 2010. (c) 2009 Wiley-Liss Inc.
Resumo:
The regular use of mouthrinses, particularly when combined with the use of air-powder polishing, could affect the appearance of tooth-colored restorations. The current study sought to evaluate the effect of NaHCO(3) powder on translucency of a microfilled composite resin immersed in different mouthrinses, at distinct evaluation periods. Eighty disk-shaped specimens of composite resin (Durafill VS, Heraeus Kulzer GmbH & Co. KG, Hanau, Germany) were prepared. The composite specimens were then randomly allocated into two groups according to the surface treatment: exposure to NaHCO(3) powder (10 seconds) or nonexposure, and they were randomly assigned into four subgroups, according to the mouthrinses employed (N = 10): Periogard (Colgate/Palmolive, Sao Bernardo do Campo, SP, Brazil), Cepacol (Aventis Pharma, Sao Paulo, SP, Brazil), Plax (Colgate/Palmolive), and distilled water (control group). The samples were immersed for 2 minutes daily, 5 days per week, over a 4-month test period. Translucency was measured with a transmission densitometer at seven evaluation periods. Statistical analyses (analysis of variance and Tukey`s test) revealed that: distilled water presented higher translucency values (86.72%); Periogard demonstrated the lowest translucency values (72.70%); and Plax (74.05%) and Cepacol (73.32%) showed intermediate translucency values, which were statistically similar between them (p > 0.01). NaHCO(3) air-powder polishing increased the changes in translucency associated with the mouthrinses. Air-powder polishing alone had no effect on material translucency. Translucency percent was gradually decreased from 1 week of immersion up to 4 months. It may be concluded that the NaHCO(3) powder and the tested mouthrinses have affected the translucency of microfilled composite resin, according to the tested time. CLINICAL SIGNIFICANCE During the last decade, the demand for composite resin restorations has grown considerably, however, controversy persists regarding the effect of surface roughness on color stability.
Resumo:
The aim of this study was to evaluate the shrinkage of a microhybrid dental composite resin photo-activated by one LED with different power densities by means of speckle technique. The dental composite resin Filtek (TM) Z-250 (3M/ESPE) at color A(2) was used for the samples preparation. Uncured composite was packed in a metallic mold and irradiated during 20 s from 100 to 1000 mW cm(-2). For the photo-activation of the samples, it was used a LED prototype (Light Emission Diode) with wavelength centered at 470 nm and adjustable power density until 1 W cm(-2). The speckle patterns obtained from the bottom composite surfaces were monitored using a CCD camera without lens. The speckle field is recorded in a digital picture and stored by CCD camera as the carrier of information on the displacement of the tested surface. The calculated values were obtained for each pair of adjacent patterns and the changes in speckle contrast as a function of time were obtained from six repeated measurements. The speckle contrasts obtained from the bottom surface with 100 mW cm(-1) were smaller than those than the other power densities. The higher power densities provided the higher shrinkage.
Resumo:
The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.
Resumo:
The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60A degrees C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.
Resumo:
Different light sources and power densities used on the photoactivation process may provide changes in the degree of conversion (DC%) and temperature ( T) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and T (degrees C) of the microhybrid composite resin (Filtek (TM) Z-250, 3M/ESPE) photoactivated with one argon laser and one LED (light-emitting diode) with different power densities. For the KBr pellet technique, the composite resin was placed into a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated as follows: a continuous argon laser (CW) and LED LCUs with power density values of 100, 400, 700, and 1000 mW/cm(2) for 20 s. The measurements for DC (%) were made in a FTIR spectrometer Bomen ( model MB 102, Quebec, Canada). Spectroscopy ( FTIR) spectra for both uncured and cured samples were analyzed using an accessory of the reflectance diffusion. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300 to 4000-cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1638 cm(-1)) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm(-1)). For T (degrees C), the samples were created in a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated for 20 s. The thermocouple was attached to the multimeter allowing temperature readings. The DC (%) and T (degrees C) were submitted to ANOVA and Tukey`s test (p < 0.05). The degree of conversion values varied from 35.0 to 50.0% ( 100 to 1000 mW/cm(2)) for an argon laser and from 41.0 to 49% (100 to 1000 mW/cm(2)) for an LED. The temperature change values varied from 1.1 to 13.1 degrees C (100 to 1000 mW/cm(2)) for an argon laser and from 1.9 to 15.0 degrees C (100 to 1000 mW/cm(2)) for an LED. The power densities showed a significant effect on the degree of conversion and changes the temperature for both light-curing units.
Resumo:
The different parameters used for the photoactivation process provide changes in the degree of conversion (DC%) and temperature rise (TR) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and TR of the microhybrid composite resin photoactivated by a new generation LED. For the KBr pellet technique, the composite resin was placed into a metallic mould (1-mm thickness and 4-mm diameter) and photoactivated as follows: continuous LED LCU with different power density values (50-1000 mW/cm(2)). The measurements for the DC (%) were made in a FTIR Spectrometer Bomen (model MB-102, Quebec-Canada). The spectroscopy (FTIR) spectra for both uncured and cured samples were analyzed using an accessory for the diffuse reflectance. The measurements were recorded in the absorbance operating under the following conditions: 32 scans, 4-cm(-1) resolution, and a 300 to 4000-cm(-1) wavelength. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of the absorbance intensities of aliphatic C=C (peak at 1638 cm(-1)) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm-1). For the TR, the samples were made in a metallic mould (2-mm thickness and 4-mm diameter) and photoactivated during 5, 10, and 20 s. The thermocouple was attached to the multimeter to allow the temperature readings. The DC (%) and TR were calculated by the standard technique and submitted to ANOVA and Tukey`s test (p < 0.05). The degree of conversion values varied from 35.0 (+/- 1.3) to 45.0 (+/- 2.4) for 5 s, 45.0 (+/- 1.3) to 55.0 (+/- 2.4) for 10 s, and 47.0 (+/- 1.3) to 52.0 (+/- 2.4) for 20 s. For the TR, the values ranged from 0.3 (+/- 0.01) to 5.4 (+/- 0.11)degrees C for 5 s, from 0.5 (+/- 0.02) to 9.3 (+/- 0.28)degrees C for 10 s, and from 1.0 (+/- 0.06) to 15.0 (+/- 0.95)degrees C for 20 s. The power densities and irradiation times showed a significant effect on the degree of conversion and temperature rise.
Resumo:
The purpose of this study was to evaluate the temperature increase during the polymerization process through the use of three different light-curing units with different irradiation times. One argon laser (Innova, Coherent), one halogen (Optilight 501, Demetron), and one blue LED (LEC 1000, MM Optics) LCU with 500 mW/cm(2) during 5, 10, 20, 30, 40, 50, and 60 s of irradiation times were used in this study. The composite resin used was a microhybrid Filtek Z-250 (3M/ESPE) at color A(2). The samples were made in a metallic mold 2 mm in thickness and 4 mm in diameter and previously light-cured during 40 s. A thermocouple (Model 120-202 EAJ, Fenwal Electronic, Milford, MA, USA) was introduced in the composite resin to measure the temperature increase during the curing process. The highest temperature increase was recorded with a Curing Light 2500 halogen LCU (5 and 31 degrees C after 5 and 60 s, respectively), while the lowest temperature increase was recorded for the Innova LCU based on an argon laser (2 and 11 degrees C after 5 and 60 s, respectively). The temperature recorded for LCU based on a blue LED was 3 and 22 degrees C after 5 and 60 s, respectively. There was a quantifiable amount of heat generated during the visible light curing of a composite resin. The amount of heat generated was influenced by the characteristics of the light-curing units used and the irradiation times.
Resumo:
The purpose of this article is to report the use of the subepithelial connective tissue graft technique combined with the coronally positioned flap on a composite resin-restored root surface to treat Miller Class I gingival recessions associated with deep cervical abrasions in maxillary central incisors. Clinical measurements, including gingival recession height, probing depth, and bleeding on probing (BoP), were recorded during the preoperative clinical examination and at 2, 6, 12, and 24 months postoperatively. During the follow-up periods, no periodontal pockets or BoP were observed. The periodontal tissue of the teeth presented normal color, texture, and contouring. In addition, it was observed that creeping attachment had occurred on the restoration. This case report shows that this form of treatment can be highly effective and predictable in resolving gingival recession associated with a deep cervical abrasion. (Quintessence Int 2012;43:597-602)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)