980 resultados para Random matrix theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents two papers on how to deal with simple systemic risk measures to assess portfolio risk characteristics. The first paper deals with the Granger-causation of systemic risk indicators based in correlation matrices in stock returns. Special focus is devoted to the Eigenvalue Entropy as some previous literature indicated strong re- sults, but not considering different macroeconomic scenarios; the Index Cohesion Force and the Absorption Ratio are also considered. Considering the S&P500, there is not ev- idence of Granger-causation from Eigenvalue Entropies and the Index Cohesion Force. The Absorption Ratio Granger-caused both the S&P500 and the VIX index, being the only simple measure that passed this test. The second paper develops this measure to capture the regimes underlying the American stock market. New indicators are built using filtering and random matrix theory. The returns of the S&P500 is modelled as a mixture of normal distributions. The activation of each normal distribution is governed by a Markov chain with the transition probabilities being a function of the indicators. The model shows that using a Herfindahl-Hirschman Index of the normalized eigenval- ues exhibits best fit to the returns from 1998-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the framework of noncommutative geometry to define a discrete model for fluctuating geometry. Instead of considering ordinary geometry and its metric fluctuations, we consider generalized geometries where topology and dimension can also fluctuate. The model describes the geometry of spaces with a countable number n of points. The spectral principle of Connes and Chamseddine is used to define dynamics. We show that this simple model has two phases. The expectation value , the average number of points in the universe, is finite in one phase and diverges in the other. Moreover, the dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, < 2. We also address another discrete model defined on a fixed d = 1 dimension, where topology fluctuates. We comment on a possible spontaneous localization of topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ims: Periodic leg movements in sleep (PLMS) are a frequent finding in polysomnography. Most patients with restless legs syndrome (RLS) display PLMS. However, since PLMS are also often recorded in healthy elderly subjects, the clinical significance of PLMS is still discussed controversially. Leg movements are seen concurrently with arousals in obstructive sleep apnoea (OSA) may also appear periodically. Quantitative assessment of the periodicity of LM/PLM as measured by inter movement intervals (IMI) is difficult. This is mainly due to influencing factors like sleep architecture and sleep stage, medication, inter and intra patient variability, the arbitrary amplitude and sequence criteria which tend to broaden the IMI distributions or make them even multi-modal. Methods: Here a statistical method is presented that enables eliminating such effects from the raw data before analysing the statistics of IMI. Rather than studying the absolute size of IMI (measured in seconds) we focus on the shape of their distribution (suitably normalized IMI). To this end we employ methods developed in Random Matrix Theory (RMT). Patients: The periodicity of leg movements (LM) of four patient groups (10 to 15 each) showing LM without PLMS (group 1), OSA without PLMS (group 2), PLMS and OSA (group 3) as well as PLMS without OSA (group 4) are compared. Results: The IMI of patients without PLMS (groups 1 and 2) and with PLMS (groups 3 and 4) are statistically different. In patients without PLMS the distribution of normalized IMI resembles closely the one of random events. In contrary IMI of PLMS patients show features of periodic systems (e.g. a pendulum) when studied in normalized manner. Conclusions: For quantifying PLMS periodicity proper normalization of the IMI is crucial. Without this procedure important features are hidden when grouping LM/PLM over whole nights or across patients. The clinical significance of PLMS might be eluded when properly separating random LM from LM that show features of periodic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate near-threshold bound states and Feshbach resonance positions for atom–rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J=0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J>0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J=0) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selon la philosophie de Katz et Sarnak, la distribution des zéros des fonctions $L$ est prédite par le comportement des valeurs propres de matrices aléatoires. En particulier, le comportement des zéros près du point central révèle le type de symétrie de la famille de fonctions $L$. Une fois la symétrie identifiée, la philosophie de Katz et Sarnak conjecture que plusieurs statistiques associées aux zéros seront modélisées par les valeurs propres de matrices aléatoires du groupe correspondant. Ce mémoire étudiera la distribution des zéros près du point central de la famille des courbes elliptiques sur $\mathbb{Q}[i]$. Brumer a effectué ces calculs en 1992 sur la famille de courbes elliptiques sur $\mathbb{Q}$. Les nouvelles problématiques reliées à la généralisation de ses travaux vers un corps de nombres seront mises en évidence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selon la philosophie de Katz et Sarnak, la distribution des zéros des fonctions $L$ est prédite par le comportement des valeurs propres de matrices aléatoires. En particulier, le comportement des zéros près du point central révèle le type de symétrie de la famille de fonctions $L$. Une fois la symétrie identifiée, la philosophie de Katz et Sarnak conjecture que plusieurs statistiques associées aux zéros seront modélisées par les valeurs propres de matrices aléatoires du groupe correspondant. Ce mémoire étudiera la distribution des zéros près du point central de la famille des courbes elliptiques sur $\mathbb{Q}[i]$. Brumer a effectué ces calculs en 1992 sur la famille de courbes elliptiques sur $\mathbb{Q}$. Les nouvelles problématiques reliées à la généralisation de ses travaux vers un corps de nombres seront mises en évidence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Encouraged by the recent construction of fuzzy sphere solutions in the Aharony, Bergman, Jafferis, and Maldacena (ABJM) theory, we re-analyze the latter from the perspective of a Matrix-like model. In particular, we argue that a vortex solution exhibits properties of a supergraviton, while a kink represents a 2-brane. Other solutions are also consistent with the Matrix-type interpretation. We study vortex scattering and compare with graviton scattering in the massive ABJM background, however our results are inconclusive. We speculate on how to extend our results to construct a Matrix theory of ABJM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most large dynamical systems are thought to have ergodic dynamics, whereas small systems may not have free interchange of energy between degrees of freedom. This assumption is made in many areas of chemistry and physics, ranging from nuclei to reacting molecules and on to quantum dots. We examine the transition to facile vibrational energy flow in a large set of organic molecules as molecular size is increased. Both analytical and computational results based on local random matrix models describe the transition to unrestricted vibrational energy flow in these molecules. In particular, the models connect the number of states participating in intramolecular energy flow to simple molecular properties such as the molecular size and the distribution of vibrational frequencies. The transition itself is governed by a local anharmonic coupling strength and a local state density. The theoretical results for the transition characteristics compare well with those implied by experimental measurements using IR fluorescence spectroscopy of dilution factors reported by Stewart and McDonald [Stewart, G. M. & McDonald, J. D. (1983) J. Chem. Phys. 78, 3907–3915].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Models used in neoclassical economics assume human behaviour to be purely rational. On the other hand, models adopted in social and behavioural psychology are founded on the ‘black box’ of human cognition. In view of these observations, this paper aims at bridging this gap by introducing psychological constructs in the well established microeconomic framework of choice behaviour based on random utility theory. In particular, it combines constructs developed employing Ajzen’s theory of planned behaviour with Lancaster’s theory of consumer demand for product characteristics to explain stated preferences over certified animal-friendly foods. To reach this objective a web survey was administered in the largest five EU-25 countries: France, Germany, Italy, Spain and the UK. Findings identify some salient cross-cultural differences between northern and southern Europe and suggest that psychological constructs developed using the Ajzen model are useful in explaining heterogeneity of preferences. Implications for policy makers and marketers involved with certified animal-friendly foods are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of calculating the probability of error in a DS/SSMA system has been extensively studied for more than two decades. When random sequences are employed some conditioning must be done before the application of the central limit theorem is attempted, leading to a Gaussian distribution. The authors seek to characterise the multiple access interference as a random-walk with a random number of steps, for random and deterministic sequences. Using results from random-walk theory, they model the interference as a K-distributed random variable and use it to calculate the probability of error in the form of a series, for a DS/SSMA system with a coherent correlation receiver and BPSK modulation under Gaussian noise. The asymptotic properties of the proposed distribution agree with other analyses. This is, to the best of the authors' knowledge, the first attempt to propose a non-Gaussian distribution for the interference. The modelling can be extended to consider multipath fading and general modulation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P-N (z(1), ... , z(N)) = Z(N)(-1)e(-N)Sigma(N)(i=1) V-alpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i) - z(j)vertical bar(2), where V-alpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal-Bargmann space. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688293]