979 resultados para REPRESENTATION-FINITE TYPE
Resumo:
We develop an algorithm and computational implementation for simulation of problems that combine Cahn–Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo- mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is pro- posed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of Electronic supplementary material The online version of this article (doi:10.1007/s00466-015-1235-1) contains supplementary material, which is available to authorized users. B P. Areias pmaa@uevora.pt 1 Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal 2 ICIST, Lisbon, Portugal 3 School of Engineering, Universidad de Cuenca, Av. 12 de Abril s/n. 01-01-168, Cuenca, Ecuador 4 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany strain in concentration, and (iv) lithiation. We analyze con- vergence with respect to spatial and time discretization and found that very good results are achievable using both a stag- gered scheme and approximated strain interpolation.
Resumo:
We show that a self-generated set of combinatorial games, S. may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question "Is there a set which will give a non-distributive but modular lattice?" appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We consider an equilibrium birth and death type process for a particle system in infinite volume, the latter is described by the space of all locally finite point configurations on Rd. These Glauber type dynamics are Markov processes constructed for pre-given reversible measures. A representation for the ``carré du champ'' and ``second carré du champ'' for the associate infinitesimal generators L are calculated in infinite volume and for a large class of functions in a generalized sense. The corresponding coercivity identity is derived and explicit sufficient conditions for the appearance and bounds for the size of the spectral gap of L are given. These techniques are applied to Glauber dynamics associated to Gibbs measure and conditions are derived extending all previous known results and, in particular, potentials with negative parts can now be treated. The high temperature regime is extended essentially and potentials with non-trivial negative part can be included. Furthermore, a special class of potentials is defined for which the size of the spectral gap is as least as large as for the free system and, surprisingly, the spectral gap is independent of the activity. This type of potentials should not show any phase transition for a given temperature at any activity.
Resumo:
In this work, we prove a weak Noether-type Theorem for a class of variational problems that admit broken extremals. We use this result to prove discrete Noether-type conservation laws for a conforming finite element discretisation of a model elliptic problem. In addition, we study how well the finite element scheme satisfies the continuous conservation laws arising from the application of Noether’s first theorem (1918). We summarise extensive numerical tests, illustrating the conservation of the discrete Noether law using the p-Laplacian as an example and derive a geometric-based adaptive algorithm where an appropriate Noether quantity is the goal functional.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
Resumo:
Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
The transformational implementation of JSD process specifications via finite automata representation
Resumo:
Conventional structured methods of software engineering are often based on the use of functional decomposition coupled with the Waterfall development process model. This approach is argued to be inadequate for coping with the evolutionary nature of large software systems. Alternative development paradigms, including the operational paradigm and the transformational paradigm, have been proposed to address the inadequacies of this conventional view of software developement, and these are reviewed. JSD is presented as an example of an operational approach to software engineering, and is contrasted with other well documented examples. The thesis shows how aspects of JSD can be characterised with reference to formal language theory and automata theory. In particular, it is noted that Jackson structure diagrams are equivalent to regular expressions and can be thought of as specifying corresponding finite automata. The thesis discusses the automatic transformation of structure diagrams into finite automata using an algorithm adapted from compiler theory, and then extends the technique to deal with areas of JSD which are not strictly formalisable in terms of regular languages. In particular, an elegant and novel method for dealing with so called recognition (or parsing) difficulties is described,. Various applications of the extended technique are described. They include a new method of automatically implementing the dismemberment transformation; an efficient way of implementing inversion in languages lacking a goto-statement; and a new in-the-large implementation strategy.
Resumo:
Еленка Генчева, Цанко Генчев В настоящата работа се разглеждат крайни прости групи G , които могат да се представят като произведение на две свои собствени неабелеви прости подгрупи A и B. Всяко такова представяне G = AB е прието да се нарича факторизация на G, а тъй като множителите A и B са избрани да бъдат прости подгрупи на G, то разглежданите факторизации са известни още като прости факторизации на G. Тук се предполага, че G е проста група от лиев тип и лиев ранг 4 над крайно поле GF (q). Ключови думи: крайни прости групи, групи от лиев тип, факторизации на групи.
Resumo:
The paper deals with a single server finite queuing system where the customers, who failed to get service, are temporarily blocked in the orbit of inactive customers. This model and its variants have many applications, especially for optimization of the corresponding models with retrials. We analyze the system in non-stationary regime and, using the discrete transformations method study, the busy period length and the number of successful calls made during it. ACM Computing Classification System (1998): G.3, J.7.