998 resultados para Quantum cognition
Resumo:
Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.
Resumo:
The Internet theoretically enables marketers to personalize a Website to an individual consumer. This article examines optimal Website design from the perspective of personality trait theory and resource-matching theory. The influence of two traits relevant to Internet Web-site processing—sensation seeking and need for cognition— were studied in the context of resource matching and different levels of Web-site complexity. Data were collected at two points of time: personality-trait data and a laboratory experiment using constructed Web sites. Results reveal that (a) subjects prefer Web sites of a medium level of complexity, rather than high or low complexity; (b)high sensation seekers prefer complex visual designs, and low sensation seekers simple visual designs, both in Web sites of medium complexity; and (c) high need-for-cognition subjects evaluated Web sites with high verbal and low visual complexity more favourably.
Resumo:
Previous research into the use of explicit and implicit conclusions in advertising has yet to demonstrate consistent effects for both brand attitudes and purchase intentions. While research has examined the role of involvement, this study contributes by examining the trait called need for cognition (NFC), which addresses a person’s propensity to engage in effortful thinking. In addition, this study introduces argument quality (AQ) as another potential moderator of conclusion explicitness effects. In a 2 × 2 experiment of 261 subjects, conclusion explicitness (explicit conclusion, implicit conclusion) and AQ (strong, weak) are manipulated, with NFC (high NFC, low NFC) as a third measured variable. Results indicate more favorable evaluations for implicit conclusions over explicit conclusions for high-NFC individuals. Further, implicit conclusions result in more favorable brand attitudes and purchase intentions when linked with strong AQ for high-NFC individuals. The findings confirm that conclusion explicitness does not differentially affect the evaluations of low-NFC subjects. Results suggest that NFC may represent an important moderating variable for future conclusion explicitness research.
Resumo:
In recent decades, concepts and ideas from James J. Gibson’s theory of direct perception in ecological psychology have been applied to the study of how perception and action regulate sport performance. This article examines the influence of different streams of thought in ecological psychology for studying cognition and action in the diverse behavioural contexts of sport and exercise. In discussing the origins of ecological psychology it can be concluded that psychologists such as Lewin, and to some extent Heider, provided the initial impetus for the development of key ideas. We argue that the papers in this special issue clarify that the different schools of thinking in ecological psychology have much to contribute to theoretical and practical developments in sport and exercise psychology. For example, Gibson emphasized and formalized how the individual is coupled with the environment; Brunswik raised the issue of the ontology of probability in human behaviour and the problem of representative design for experimental task constraints; Barker looked carefully into extra-individual behavioural contexts and Bronfenbrenner presented insights pertinent to the relations between behaviour contexts, and macro influences on behaviour. In this overview, we highlight essential issues from the main schools of thought of relevance to the contexts of sport and exercise, and we consider some potential theoretical linkages with dynamical systems theory.
Resumo:
Following an early claim by Nelson & McEvoy suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. In this paper quantum theory is proposed as a framework suitable for modelling the mental lexicon, specifically the results obtained from both intralist and extralist word association experiments. Some initial models exploring this hypothesis are discussed, and they appear to be capable of substantial agreement with pre-existing experimental data. The paper concludes with a discussion of some experiments that will be performed in order to test these models.
Resumo:
The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of time and can construct maps of large and complex areas from very weak geometric information. The work contrasts with other efforts to embody models of rat brains in robots. The article describes the key elements of the known biology of the rat brain in relation to navigation and how the RatSLAM model captures the ideas from biology in a fashion suitable for implementation on a robotic platform. The paper then outline RatSLAM's performance in two difficult robot navigation challenges, demonstrating how a cognitive robotics approach to navigation can produce results that rival other state of the art approaches in robotics.
Resumo:
One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination are represented by identical quantum states. We state desirable security properties such as anonymity and unforgeability and propose two candidate quantum coin schemes: one using black box operations, and another using blind quantum computation.
Resumo:
Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.
Resumo:
Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum-like model of the human mental lexicon, and shows one set of recent experimental data suggesting that concept combinations can indeed behave non-separably. There is some reason to believe that the human mental lexicon displays entanglement.
Resumo:
This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.
Resumo:
In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.
Three primary school students’ cognition about 3D rotation in a virtual reality learning environment
Resumo:
This paper reports on three primary school students’ explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students found that the different order of the two turns ended up with different directions in the VRLE. This was contrary to the students’ prior predictions based on using pen, paper and body movements. The findings of this study showed the difficulty young children have in perceiving and understanding the non-commutative nature of 3D rotation and the power of the computational VRLE in giving students experiences that they rarely have in real life with 3D manipulations and 3D mental movements.
Resumo:
In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.