982 resultados para Qualitative spatial reasoning
Resumo:
Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.
Resumo:
A crucial aspect of evidential reasoning in crime investigation involves comparing the support that evidence provides for alternative hypotheses. Recent work in forensic statistics has shown how Bayesian Networks (BNs) can be employed for this purpose. However, the specification of BNs requires conditional probability tables describing the uncertain processes under evaluation. When these processes are poorly understood, it is necessary to rely on subjective probabilities provided by experts. Accurate probabilities of this type are normally hard to acquire from experts. Recent work in qualitative reasoning has developed methods to perform probabilistic reasoning using coarser representations. However, the latter types of approaches are too imprecise to compare the likelihood of alternative hypotheses. This paper examines this shortcoming of the qualitative approaches when applied to the aforementioned problem, and identifies and integrates techniques to refine them.
Resumo:
A crucial aspect of evidential reasoning in crime investigation involves comparing the support that evidence provides for alternative hypotheses. Recent work in forensic statistics has shown how Bayesian Networks (BNs) can be employed for this purpose. However, the specification of BNs requires conditional probability tables describing the uncertain processes under evaluation. When these processes are poorly understood, it is necessary to rely on subjective probabilities provided by experts. Accurate probabilities of this type are normally hard to acquire from experts. Recent work in qualitative reasoning has developed methods to perform probabilistic reasoning using coarser representations. However, the latter types of approaches are too imprecise to compare the likelihood of alternative hypotheses. This paper examines this shortcoming of the qualitative approaches when applied to the aforementioned problem, and identifies and integrates techniques to refine them.
Resumo:
This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development, with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change.
Resumo:
The pedagogical exercise described here was used to investigate how spatial communication about the manipulation of objects in a virtual and physical space is communicated between remote partners. It continues work done by others. Where it differs from previous research in this area is in its use of a qualitative methodology to study how these types of interactions are structured, communicated and interpreted via text-based media. What emerged from the qualitative analysis are new insights over the previous quantitative investigations. This paper reports on completed research.
Resumo:
Qualitative reasoning has traditionally been applied in the domain of physical systems, where there are well established and understood laws governing the behaviour of each `component' in the system. Such application has shown that it is possible to produce models which can be used for explaining and predicting the behaviour of physical phenomena and also trouble-shooting. The principles underlying the theory ensure that the models are robust and exhibit consistent behaviour under all conditions. This research examines the validity of applying the theory in the financial domain where such laws may not exist or if they do, may not be universally applicable. In particular, it investigates how far these principles and techniques may be applied in the construction of financial analysis models. Because of the inherent differences in the nature of these two domains, it is argued that a different qualitative value system ought to be employed. The dissertation enlarges on the constraints this places on model descriptions and the effect it may have on the power and usefulness of the resulting models. It also describes the implementation of a system that investigates the implications of applying this theory by way of testing it on situations drawn from both text-books and published financial information.
Resumo:
Current reform initiatives recommend that geometry instruction include the study of three-dimensional geometric objects and provide students with opportunities to use spatial skills in problem-solving tasks. Geometer's Sketchpad (GSP) is a dynamic and interactive computer program that enables the user to investigate and explore geometric concepts and manipulate geometric structures. Research using GSP as an instructional tool has focused primarily on teaching and learning two-dimensional geometry. This study explored the effect of a GSP based instructional environment on students' geometric thinking and three-dimensional spatial ability as they used GSP to learn three-dimensional geometry. For 10 weeks, 18 tenth-grade students from an urban school district used GSP to construct and analyze dynamic, two-dimensional representations of three-dimensional objects in a classroom environment that encouraged exploration, discussion, conjecture, and verification. The data were collected primarily from participant observations and clinical interviews and analyzed using qualitative methods of analysis. In addition, pretest and posttest measures of three-dimensional spatial ability and van Hiele level of geometric thinking were obtained. Spatial ability measures were analyzed using standard t-test analysis. ^ The data from this study indicate that GSP is a viable tool to teach students about three-dimensional geometric objects. A comparison of students' pretest and posttest van Hiele levels showed an improvement in geometric thinking, especially for students on lower levels of the van Hiele theory. Evidence at the p < .05 level indicated that students' spatial ability improved significantly. Specifically, the GSP dynamic, visual environment supported students' visualization and reasoning processes as students attempted to solve challenging tasks about three-dimensional geometric objects. The GSP instructional activities also provided students with an experiential base and an intuitive understanding about three-dimensional objects from which more formal work in geometry could be pursued. This study demonstrates that by designing appropriate GSP based instructional environments, it is possible to help students improve their spatial skills, develop more coherent and accurate intuitions about three-dimensional geometric objects, and progress through the levels of geometric thinking proposed by van Hiele. ^
Resumo:
Geographical information systems (GIS) coupled to 3D visualisation technology is an emerging tool for urban planning and landscape design applications. The utility of 3D GIS for realistically visualising the built environment and proposed development scenarios is much advocated in the literature. Planners assess the merits of proposed changes using visual impact assessment (VIA). We have used Arcview GIS and visualisation software: called PolyTRIM from the University of Toronto, Centre for Landscape Research (CLR) to create a 3D scene for the entrance to a University campus. The paper investigates the thesis that to facilitate VIA in planning and design requires not only visualisation, but also a structured evaluation technique (Delphi) to arbitrate the decision-making process. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ciências da Educação, especialidade Educação Matemática na Educação Pré-Escolar e nos 1.º e 2.º Ciclos do Ensino Básico
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.
Resumo:
Este estudo insere-se no âmbito da Geometria e pretende compreender a influência dos recursos didáticos utilizados no reconhecimento de propriedades e relações geométricas em figuras planas. De acordo com o objetivo do estudo formulamos duas questões orientadoras que se articulam entre si. - Que fragilidades apresentam os alunos, no reconhecimento de propriedades geométricas em figuras planas? - Que contributos resultam da utilização de materiais manipuláveis, na visualização espacial e investigação de propriedades geométricas? Com este estudo pretendemos reunir informação que contribua para aprofundar o conhecimento sobre o raciocínio geométrico dos alunos. Em termos metodológicos segue um método de investigação misto, com recolha de informação qualitativa de natureza interpretativa e quantitativa, na modalidade de estudo de caso. A recolha de dados foi realizada numa turma de 4.º ano do ensino básico onde foi desenvolvida a experiência didática. A informação recolhida resultou da observação direta e as fontes dos dados foram as produções dos alunos, as notas de campo, registos fotográficos, vídeo e áudio. A docente assumiu o papel de investigadora e orientadora das tarefas propostas aos alunos tendo estes desempenhado um papel ativo na construção do seu próprio conhecimento. Os resultados obtidos permitem evidenciar as fragilidades dos alunos no reconhecimento de propriedades geométricas de figuras planas em diferentes posições. Destacam ainda os contributos da utilização da Mira e do Tangram, no estudo da simetria e no desenvolvimento da visualização espacial para a concretização de aprendizagens concretas, motivadoras e significativas.
Resumo:
O presente estudo foi desenvolvido no âmbito do Mestrado de Didática da Matemática e Ciências da Natureza, no 1.º e 2.º Ciclos, no domínio da Geometria. Tem como principal objetivo compreender e analisar, através da implementação de uma sequência de tarefas de investigação e exploração, de que forma o processo de ensino e aprendizagem dos alunos, na área dos quadriláteros, com os recursos GeoGebra e o Geoplano, contribui para o desenvolvimento do raciocínio geométrico. Neste sentido, definiram-se as seguintes questões de investigação: (1) Qual a imagem concetual que os alunos possuem de cada um dos quadriláteros? (2) Que conhecimentos têm os alunos sobre as propriedades dos quadriláteros: quadrados, retângulos e losangos? (3) Quais os contributos do Geoplano e do GeoGebra na compreensão e identificação das propriedades dos quadriláteros? A metodologia adotada foi de natureza qualitativa, do tipo interpretativo, baseada em dois estudos de caso. Na recolha de dados, foram utilizados os seguintes instrumentos: observação, questionário, documentos produzidos pelos alunos, entrevistas informais, registos áudio e fotografias aos trabalhos realizados. Na análise dos dados, procurou-se descrever e interpretar os dados recolhidos, no âmbito do objeto do estudo. Os resultados mostraram que a sequência de tarefas e o modo como foram desenvolvidas foram fundamentais na compreensão dos conteúdos trabalhados. Regista-se também que os recursos utilizados motivaram os alunos e contribuíram para a interação, como também para a compreensão dos conceitos geométricos. Por outro lado, a utilização do GeoGebra e do Geoplano contribuíram para o desenvolvimento do raciocínio espacial e geométrico.
Resumo:
PURPOSE: The purposes of this study were to (1) develop a high-resolution 3-T magnetic resonance angiography (MRA) technique with an in-plane resolution approximate to that of multidetector coronary computed tomography (MDCT) and a voxel size of 0.35 × 0.35 × 1.5 mm³ and to (2) investigate the image quality of this technique in healthy participants and preliminarily in patients with known coronary artery disease (CAD). MATERIALS AND METHODS: A 3-T coronary MRA technique optimized for an image acquisition voxel as small as 0.35 × 0.35 × 1.5 mm³ (high-resolution coronary MRA [HRC]) was implemented and the coronary arteries of 22 participants were imaged. These included 11 healthy participants (average age, 28.5 years; 5 men) and 11 participants with CAD (average age, 52.9 years; 5 women) as identified on MDCT. In addition, the 11 healthy participants were imaged using a method with a more common spatial resolution of 0.7 × 1 × 3 mm³ (regular-resolution coronary MRA [RRC]). Qualitative and quantitative comparisons were made between the 2 MRA techniques. RESULTS: Normal vessels and CAD lesions were successfully depicted at 350 × 350 μm² in-plane resolution with adequate signal-to-noise ratio (SNR) and contrast-to-noise ratio. The CAD findings were consistent among MDCT and HRC. The HRC showed a 47% improvement in sharpness despite a reduction in SNR (by 72%) and in contrast-to-noise ratio (by 86%) compared with the regular-resolution coronary MRA. CONCLUSION: This study, as a first step toward substantial improvement in the resolution of coronary MRA, demonstrates the feasibility of obtaining at 3 T a spatial resolution that approximates that of MDCT. The acquisition in-plane pixel dimensions are as small as 350 × 350 μm² with a 1.5-mm slice thickness. Although SNR is lower, the images have improved sharpness, resulting in image quality that allows qualitative identification of disease sites on MRA consistent with MDCT.