985 resultados para Profiling systems
Resumo:
Agile ridesharing aims to utilise the capability of social networks and mobile phones to facilitate people to share vehicles and travel in real time. However the application of social networking technologies in local communities to address issues of personal transport faces significant design challenges. In this paper we describe an iterative design-based approach to exploring this problem and discuss findings from the use of an early prototype. The findings focus upon interaction, privacy and profiling. Our early results suggest that explicitly entering information such as ride data and personal profile data into formal fields for explicit computation of matches, as is done in many systems, may not be the best strategy. It might be preferable to support informal communication and negotiation with text search techniques.
Resumo:
Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0.
Resumo:
The social tags in Web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.
Resumo:
Risk identification is one of the most challenging stages in the risk management process. Conventional risk management approaches provide little guidance and companies often rely on the knowledge of experts for risk identification. In this paper we demonstrate how risk indicators can be used to predict process delays via a method for configuring so-called Process Risk Indicators(PRIs). The method learns suitable configurations from past process behaviour recorded in event logs. To validate the approach we have implemented it as a plug-in of the ProM process mining framework and have conducted experiments using various data sets from a major insurance company.
Resumo:
Metabolomic profiling offers direct insights into the chemical environment and metabolic pathway activities at sites of human disease. During infection, this environment may receive important contributions from both host and pathogen. Here we apply an untargeted metabolomics approach to identify compounds associated with an E. coli urinary tract infection population. Correlative and structural data from minimally processed samples were obtained using an optimized LC-MS platform capable of resolving ~2300 molecular features. Principal component analysis readily distinguished patient groups and multiple supervised chemometric analyses resolved robust metabolomic shifts between groups. These analyses revealed nine compounds whose provisional structures suggest candidate infection-associated endocrine, catabolic, and lipid pathways. Several of these metabolite signatures may derive from microbial processing of host metabolites. Overall, this study highlights the ability of metabolomic approaches to directly identify compounds encountered by, and produced from, bacterial pathogens within human hosts.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.
Resumo:
This research has built on the growing interest in the prosumer in the workplace – prosumers are those users with high technological skills who both produce and consume their own technology solutions. Prosumers are leaders in their industrial or professional fields and who expect to obtain significant benefit from innovating. The literature reveals that commercially attractive products tend to be developed by prosumers who are at the leading edge of important marketplace trends and therefore this group is increasingly important. This study surveyed prosumers across a variety of occupations and workplaces and explored the motivators and personality traits of the prosumer.
Resumo:
Non-healing wounds represent a significant burden to healthcare systems and societies worldwide. Current best practice treatments of chronic wounds can require patients to undergo extensive periods of therapy without any positive outcome. This consumes substantial healthcare resources and severely impacts patient quality of life. At present, there are no measures to predict a patient's response to best practice care. The hypothesis of this thesis was that biochemical markers could be found within the wound fluid of chronic ulcers and these markers could predict the healing outcome of an ulcer undergoing best practice care. Discovery phase proteomic and mass spectrometry techniques were utilised to determine novel proteins that correlated with the healing outcome of ulcers. These candidate biomarkers could be developed into simple dip-stick tools for use in clinical practice. This would aid clinicians in the choice of effective wound management strategies to address hard-to-heal wounds.
Resumo:
The current state of the prefabricated housing market in Australia is systematically profiled, guided by a theoretical systems model. Particular focus is given to two original data collections. The first identifies manufacturers and builders using prefabrication innovations, and the second compares the context for prefabricated housing in Australia with that of key international jurisdictions. The results indicate a small but growing market for prefabricated housing in Australia, often building upon expertise developed through non-residential building applications. The international comparison highlighted the complexity of the interactions between macro policy decisions and historical influences and the uptake of prefabricated housing. The data suggest factors such as the small scale of the Australian market, and a lack of investment in research, development and training have not encouraged prefabrication. A lack of clear regulatory policy surrounding prefabricated housing is common both in Australia and internationally, with local effects in regards to home warranties and housing finance highlighted. Future research should target the continuing lack of consideration of prefabrication from within the housing construction industry, and build upon the research reported in this paper to further quantify the potential end user market and the continuing development of the industry.
Resumo:
Research on attrition has focused on the economic significance of low graduation rates in terms of costs to students (fees that do not culminate in a credential) and impact on future income. For a student who fails a unit and repeats the unit multiple times, the financial impact is significant and lasting (Bexley, Daroesman, Arkoudis & James 2013). There are obvious advantages for the timely completion of a degree, both for the student and the institution. Advantages to students include fee minimisation, enhanced engagement opportunities, effectual pathway to employment and a sense of worth, morale and cohort-identity benefits. Work undertaken by the QUT Analytics Project in 2013 and 2014 explored student engagement patterns capturing a variety of data sources and specifically, the use of LMS amongst students in 804 undergraduate units in one semester. Units with high failure rates were given further attention and it was found that students who were repeating a unit were less likely to pass the unit than students attempting it for the first time. In this repeating cohort, academic and behavioural variables were consistently more significant in the modelling than were any demographic variables, indicating that a student’s performance at university is far more impacted by what they do once they arrive than it is by where they come from. The aim of this poster session is to examine the findings and commonalities of a number of case studies that articulated the engagement activities of repeating students (which included collating data from Individual Unit Reports, academic and peer advising programs and engagement with virtual learning resources). Understanding the profile of the repeating student cohort is therefore as important as considering the characteristics of successful students so that the institution might be better placed to target the repeating students and make proactive interventions as early as possible.
Resumo:
The importance of a thorough and systematic literature review has long been recognised across academic domains as critical to the foundation of new knowledge and theory evolution. Driven by an exponentially growing body of knowledge in the IS discipline, there has been a recent influx of guidance on how to conduct a literature review. As literature reviews are emerging as a standalone research method in itself, increasingly these method focused guidelines are of great interest, receiving acceptance at top tier IS publication outlets. Nevertheless, the finer details which offer justification for the selected content, and the effective presentation of supporting data has not been widely discussed in these method papers to date. This paper addresses this gap by exploring the concept of ‘literature profiling’ while arguing that it is a key aspect of a comprehensive literature review. The study establishes the importance of profiling for managing aspects such as quality assurance, transparency and the mitigation of selection bias. And then discusses how profiling can provide a valid basis for data analysis based on the attributes of selected literature. In essence, this study has conducted an archival analysis of literature (predominately from the IS domain) to present its main argument; the value for literature profiling, with supporting exemplary illustrations.
Resumo:
Online Social Networks (OSNs) facilitate to create and spread information easily and rapidly, influencing others to participate and propagandize. This work proposes a novel method of profiling Influential Blogger (IB) based on the activities performed on one's blog documents who influences various other bloggers in Social Blog Network (SBN). After constructing a social blogging site, a SBN is analyzed with appropriate parameters to get the Influential Blog Power (IBP) of each blogger in the network and demonstrate that profiling IB is adequate and accurate. The proposed Profiling Influential Blogger (PIB) Algorithm survival rate of IB is high and stable. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).