906 resultados para Partition of unity implicits
Resumo:
Mode of access: Internet.
Resumo:
"Counterinsurgency (COIN) requires an integrated military, political, and economic program best developed by teams that field both civilians and soldiers. These units should operate with some independence but under a coherent command. In Vietnam, after several false starts, the United States developed an effective unified organization, Civil Operations and Revolutionary Development Support (CORDS), to guide the counterinsurgency. CORDS had three components absent from our efforts in Afghanistan today: sufficient personnel (particularly civilian), numerous teams, and a single chain of command that united the separate COIN programs of the disparate American departments at the district, provincial, regional, and national levels. This paper focuses on the third issue and describes the benefits that unity of command at every level would bring to the American war in Afghanistan. The work begins with a brief introduction to counterinsurgency theory, using a population-centric model, and examines how this warfare challenges the United States. It traces the evolution of the Provincial Reconstruction Teams (PRTs) and the country team, describing problems at both levels. Similar efforts in Vietnam are compared, where persistent executive attention finally integrated the government's counterinsurgency campaign under the unified command of the CORDS program. The next section attributes the American tendency towards a segregated response to cultural differences between the primary departments, executive neglect, and societal concepts of war. The paper argues that, in its approach to COIN, the United States has forsaken the military concept of unity of command in favor of 'unity of effort' expressed in multiagency literature. The final sections describe how unified authority would improve our efforts in Afghanistan and propose a model for the future."--P. iii.
Resumo:
"An abridgement of [the author's] The household of faith."
Resumo:
Cover title.
Resumo:
The central elements of the algebra of monodromy matrices associated with the Z(n) R-matrix are studied. When the crossing parameter w takes a special rational value w = n/N, where N and n are positive coprime integers, the center is substantially larger than that in the generic case for which the quantum determinant provides the center. In the trigonometric limit, the situation corresponds to the quantum group at roots of unity. This is a higher rank generalization of the recent results by Belavin and Jimbo. (c) 2004 Elsevier B.V. All rights reserved.
Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling
Resumo:
We present an isogeometric thin shell formulation for multi-patches based on rational splines over hierarchical T-meshes (RHT-splines). Nitsche’s method is employed to efficiently couple the patches. The RHT-splines have the advantages of allowing a computationally feasible local refine- ment, are free from linear independence, possess high order continuity and satisfy the partition of unity and non-negativity, properties. In addition, C 1 continuity of the RHT-splines obviates to use of rotational degrees of freedom. The good performance of the present method is demonstrated by a number of numerical examples.
Resumo:
Ortogonaalisen M-kaistaisen moniresoluutioanalyysin matemaattiset perusteet esitetään yksityiskohtaisesti. Coifman-aallokkeiden määritelmä yleistetään dilaatiokertoimelle M ja nollasta poikkeavalle häviävien momenttien keskukselle.Funktion approksimointia näytepisteistä aallokkeiden avulla pohditaan ja erityisesti esitetään approksimaation asymptoottinen virhearvio Coifman-aallokkeille. Skaalaussuotimelle osoitetaan välttämättömät ja riittävät ehdot, jotka johtavat yleistettyihin Coifman-aallokkeisiin. Moniresoluutioanalyysin tiheys todistetaansuoraan Lebesguen integraalin määritelmään perustuen yksikön partitio-ominaisuutta käyttäen. Todistus on riittävä sellaisenaan avaruudessa L2(Wd) käyttämättä Fourier-tason ominaisuuksia tai ehtoja. Mallatin algoritmi johdetaan M-kaistaisille aallokkeille ja moniuloitteisille signaaleille. Algoritmille esitetään myös rekursiivinen muoto. Differentiaalievoluutioalgoritmin avulla ratkaistaan Coifman-aallokkeisiin liittyvien skaalaussuotimien kertoimien arvoja useille skaalausfunktiolle. Approksimaatio- ja kuvanpakkausesimerkkejä esitetään menetelmien havainnollistamiseksi. Differentiaalievoluutioalgoritmin avulla etsitään myös referenssikuville optimoitu skaalaussuodin. Löydetty suodin on regulaarinen ja erittäinsymmetrinen.
Resumo:
The aim of this paper is the investigation of the error which results from the method of approximate approximations applied to functions defined on compact in- tervals, only. This method, which is based on an approximate partition of unity, was introduced by V. Mazya in 1991 and has mainly been used for functions defied on the whole space up to now. For the treatment of differential equations and boundary integral equations, however, an efficient approximation procedure on compact intervals is needed. In the present paper we apply the method of approximate approximations to functions which are defined on compact intervals. In contrast to the whole space case here a truncation error has to be controlled in addition. For the resulting total error pointwise estimates and L1-estimates are given, where all the constants are determined explicitly.
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.
Resumo:
In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.
Resumo:
La presente Tesis Doctoral aborda la introducción de la Partición de Unidad de Bernstein en la forma débil de Galerkin para la resolución de problemas de condiciones de contorno en el ámbito del análisis estructural. La familia de funciones base de Bernstein conforma un sistema generador del espacio de funciones polinómicas que permite construir aproximaciones numéricas para las que no se requiere la existencia de malla: las funciones de forma, de soporte global, dependen únicamente del orden de aproximación elegido y de la parametrización o mapping del dominio, estando las posiciones nodales implícitamente definidas. El desarrollo de la formulación está precedido por una revisión bibliográfica que, con su punto de partida en el Método de Elementos Finitos, recorre las principales técnicas de resolución sin malla de Ecuaciones Diferenciales en Derivadas Parciales, incluyendo los conocidos como Métodos Meshless y los métodos espectrales. En este contexto, en la Tesis se somete la aproximación Bernstein-Galerkin a validación en tests uni y bidimensionales clásicos de la Mecánica Estructural. Se estudian aspectos de la implementación tales como la consistencia, la capacidad de reproducción, la naturaleza no interpolante en la frontera, el planteamiento con refinamiento h-p o el acoplamiento con otras aproximaciones numéricas. Un bloque importante de la investigación se dedica al análisis de estrategias de optimización computacional, especialmente en lo referente a la reducción del tiempo de máquina asociado a la generación y operación con matrices llenas. Finalmente, se realiza aplicación a dos casos de referencia de estructuras aeronáuticas, el análisis de esfuerzos en un angular de material anisotrópico y la evaluación de factores de intensidad de esfuerzos de la Mecánica de Fractura mediante un modelo con Partición de Unidad de Bernstein acoplada a una malla de elementos finitos. ABSTRACT This Doctoral Thesis deals with the introduction of Bernstein Partition of Unity into Galerkin weak form to solve boundary value problems in the field of structural analysis. The family of Bernstein basis functions constitutes a spanning set of the space of polynomial functions that allows the construction of numerical approximations that do not require the presence of a mesh: the shape functions, which are globally-supported, are determined only by the selected approximation order and the parametrization or mapping of the domain, being the nodal positions implicitly defined. The exposition of the formulation is preceded by a revision of bibliography which begins with the review of the Finite Element Method and covers the main techniques to solve Partial Differential Equations without the use of mesh, including the so-called Meshless Methods and the spectral methods. In this context, in the Thesis the Bernstein-Galerkin approximation is subjected to validation in one- and two-dimensional classic benchmarks of Structural Mechanics. Implementation aspects such as consistency, reproduction capability, non-interpolating nature at boundaries, h-p refinement strategy or coupling with other numerical approximations are studied. An important part of the investigation focuses on the analysis and optimization of computational efficiency, mainly regarding the reduction of the CPU cost associated with the generation and handling of full matrices. Finally, application to two reference cases of aeronautic structures is performed: the stress analysis in an anisotropic angle part and the evaluation of stress intensity factors of Fracture Mechanics by means of a coupled Bernstein Partition of Unity - finite element mesh model.
Resumo:
The aim of this paper is to suggest a method to find endogenously the points that group the individuals of a given distribution in k clusters, where k is endogenously determined. These points are the cut-points. Thus, we need to determine a partition of the N individuals into a number k of groups, in such way that individuals in the same group are as alike as possible, but as distinct as possible from individuals in other groups. This method can be applied to endogenously identify k groups in income distributions: possible applications can be poverty
Resumo:
We have determined (1) the abundance and isotopic composition of pyrite, monosulphide, elemental sulphur, organically bound sulphur, and dissolved sulphide; (2) the partition of ferric and ferrous iron; (3) the organic carbon contents of sediments recovered at two sites drilled on the Peru Margin during Leg 112 of the Ocean Drilling Program. Sediments at both sites are characterised by high levels of organically bound sulphur (OBS). OBS comprises up to 50% of total sedimentary sulphur and up to 1% of bulk sediment. The weight ratio of S to C in organic matter varies from 0.03 to 0.15 (mean = 0.10). Such ratios are like those measured in lithologically similar, but more deeply buried petroleum source rocks of the Monterey and Sisquoc formations in California. The sulphur content of organic matter is not limited by the availability of porewater sulphide. Isotopic data suggest that sulphur is incorporated into organic matter within a metre of the sediment surface, at least partly by reaction with polysulphides. Most inorganic Sulphur occurs as pyrite. Pyrite formation occurred within surface sediments and was limited by the availability of reactive iron. But despite highly reducing sulphidic conditions, only 35-65% of the total iron was converted to sulphide; 10-30% of the total iron still occurs as Fe(III). In surface sediments, the isotopic composition of pyrite is similar to that of both iron monosulphide and dissolved sulphide. Either pyrite, like monosulphide, formed by direct reaction between dissolved sulphide and detrital iron, and/or the sulphur species responsible for converting FeS to FeS2 is isotopically similar to dissolved sulphide. Likely stoichiometries for the reaction between ferric iron and excess sulphide imply a maximum resulting FeS2:FeS ratio of 1:1. Where pyrite dominates the pool of iron sulphides, at least some pyrite must have formed by reaction between monosulphide and elemental sulphur and/or polysulphide. Elemental sulphur (S°) is most abundant in surface sediments and probably formed by oxidation of sulphide diffusing across the sediment-water interface. In surface sediments, S° is isotopically heavier than dissolved sulphide, FeS and FeS2 and is unlikely to have been involved in the conversion of FeS to FeS2. Polysulphides are thus implicated as the link between FeS and FeS2.