999 resultados para Paramilitary operations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While using unmanned systems in combat is not new, what will be new in the foreseeable future is how such systems are used and integrated in the civilian space. The potential use of Unmanned Aerial Vehicles in civil and commercial applications is becoming a fact, and is receiving considerable attention by industry and the research community. The majority of Unmanned Aerial Vehicles performing civilian tasks are restricted to flying only in segregated space, and not within the National Airspace. The areas that UAVs are restricted to flying in are typically not above populated areas, which in turn are the areas most useful for civilian applications. The reasoning behind the current restrictions is mainly due to the fact that current UAV technologies are not able to demonstrate an Equivalent Level of Safety to manned aircraft, particularly in the case of an engine failure which would require an emergency or forced landing. This chapter will preset and guide the reader through a number of developments that would facilitate the integration of UAVs into the National Airspace. Algorithms for UAV Sense-and-Avoid and Force Landings are recognized as two major enabling technologies that will allow the integration of UAVs in the civilian airspace. The following sections will describe some of the techniques that are currently being tested at the Australian Research Centre for Aerospace Automation (ARCAA), which places emphasis on the detection of candidate landing sites using computer vision, the planning of the descent path trajectory for the UAV, and the decision making process behind the selection of the final landing site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this thesis is to analyse and optimise a public hospital Emergency Department. The Emergency Department (ED) is a complex system with limited resources and a high demand for these resources. Adding to the complexity is the stochastic nature of almost every element and characteristic in the ED. The interaction with other functional areas also complicates the system as these areas have a huge impact on the ED and the ED is powerless to change them. Therefore it is imperative that OR be applied to the ED to improve the performance within the constraints of the system. The main characteristics of the system to optimise included tardiness, adherence to waiting time targets, access block and length of stay. A validated and verified simulation model was built to model the real life system. This enabled detailed analysis of resources and flow without disruption to the actual ED. A wide range of different policies for the ED and a variety of resources were able to be investigated. Of particular interest was the number and type of beds in the ED and also the shift times of physicians. One point worth noting was that neither of these resources work in isolation and for optimisation of the system both resources need to be investigated in tandem. The ED was likened to a flow shop scheduling problem with the patients and beds being synonymous with the jobs and machines typically found in manufacturing problems. This enabled an analytic scheduling approach. Constructive heuristics were developed to reactively schedule the system in real time and these were able to improve the performance of the system. Metaheuristics that optimised the system were also developed and analysed. An innovative hybrid Simulated Annealing and Tabu Search algorithm was developed that out-performed both simulated annealing and tabu search algorithms by combining some of their features. The new algorithm achieves a more optimal solution and does so in a shorter time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the main processes and operations in mining industries and present a comprehensive survey of operations research methodologies that have been applied over the last several decades. The literature review is classified into four main categories: mine design; mine production; mine transportation; and mine evaluation. Mining design models are further separated according to two main mining methods: open-pit and underground. Moreover, mine production models are subcategorised into two groups: ore mining and coal mining. Mine transportation models are further partitioned in accordance with fleet management, truck haulage and train scheduling. Mine evaluation models are further subdivided into four clusters in terms of mining method selection, quality control, financial risks and environmental protection. The main characteristics of four Australian commercial mining software are addressed and compared. This paper bridges the gaps in the literature and motivates researchers to develop more applicable, realistic and comprehensive operations research models and solution techniques that are directly linked with mining industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hospital consists of a number of wards, units and departments that provide a variety of medical services and interact on a day-to-day basis. Nearly every department within a hospital schedules patients for the operating theatre (OT) and most wards receive patients from the OT following post-operative recovery. Because of the interrelationships between units, disruptions and cancellations within the OT can have a flow-on effect to the rest of the hospital. This often results in dissatisfied patients, nurses and doctors, escalating waiting lists, inefficient resource usage and undesirable waiting times. The objective of this study is to use Operational Research methodologies to enhance the performance of the operating theatre by improving elective patient planning using robust scheduling and improving the overall responsiveness to emergency patients by solving the disruption management and rescheduling problem. OT scheduling considers two types of patients: elective and emergency. Elective patients are selected from a waiting list and scheduled in advance based on resource availability and a set of objectives. This type of scheduling is referred to as ‘offline scheduling’. Disruptions to this schedule can occur for various reasons including variations in length of treatment, equipment restrictions or breakdown, unforeseen delays and the arrival of emergency patients, which may compete for resources. Emergency patients consist of acute patients requiring surgical intervention or in-patients whose conditions have deteriorated. These may or may not be urgent and are triaged accordingly. Most hospitals reserve theatres for emergency cases, but when these or other resources are unavailable, disruptions to the elective schedule result, such as delays in surgery start time, elective surgery cancellations or transfers to another institution. Scheduling of emergency patients and the handling of schedule disruptions is an ‘online’ process typically handled by OT staff. This means that decisions are made ‘on the spot’ in a ‘real-time’ environment. There are three key stages to this study: (1) Analyse the performance of the operating theatre department using simulation. Simulation is used as a decision support tool and involves changing system parameters and elective scheduling policies and observing the effect on the system’s performance measures; (2) Improve viability of elective schedules making offline schedules more robust to differences between expected treatment times and actual treatment times, using robust scheduling techniques. This will improve the access to care and the responsiveness to emergency patients; (3) Address the disruption management and rescheduling problem (which incorporates emergency arrivals) using innovative robust reactive scheduling techniques. The robust schedule will form the baseline schedule for the online robust reactive scheduling model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2002, the United Nations Office on Drugs and Crime (UNODC) issued a report entitled Results of a pilot survey of forty selected organized criminal groups in sixteen countries which established five models of organised crime. This paper reviews these and other common organised crime models and drug trafficking models, and applies them to cases of South East Asian drug trafficking in the Australian state of Queensland. The study tests the following hypotheses: (1) South-East Asian drug trafficking groups in Queensland will operate within a criminal network or core group; (2) Wholesale drug distributors in Queensland will not fit consistently under any particular UN organised crime model; and (3) Street dealers will have no organisational structure. The study concluded that drug trafficking or importation closely resembles a criminal network or core group structure. Wholesale dealers did not fit consistently into any UN organised crime model. Street dealers had no organisational structure as an organisational structure is typically found in mid- to high-level drug trafficking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Society faces an unprecedented global education challenge to equip professionals with the knowledge and skills to address emerging 21st Century challenges, spanning climate change mitigation through to adaptation measures to deal with issues such as temperature and sea level rise, and diminishing fresh water and fossil fuel reserves. This paper discusses the potential for systemic and synergistic integration of curriculum with campus operations to accelerate curriculum renewal towards ESD, drawing on the authors' experiences within engineering education. The paper begins by a providing a brief overview of the need for timely curriculum renewal towards ESD in tertiary education. The paper then highlights some examples of academic barriers that need to be overcome for integration efforts to be successful, and opportunities for promoting the benefits of such integration. The paper concludes by discussing the rational for planning green campus initiatives within a larger system of curriculum renewal considerations, including awareness raising and developing a common understanding, identifying and mapping graduate attributes, curriculum auditing, content development and strategic renewal, and bridging and outreach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical approach for identifying solution robustness is proposed for situations where parameters are uncertain. The approach is based upon the interpretation of a probability density function (pdf) and the definition of three parameters that describe how significant changes in the performance of a solution are deemed to be. The pdf is constructed by interpreting the results of simulations. A minimum number of simulations are achieved by updating the mean, variance, skewness and kurtosis of the sample using computationally efficient recursive equations. When these criterions have converged then no further simulations are needed. A case study involving several no-intermediate storage flow shop scheduling problems demonstrates the effectiveness of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of Unmanned Aircraft Systems (UAS) there is a growing need for safety standards and regulatory frameworks to manage the risks associated with their operations. The primary driver for airworthiness regulations (i.e., those governing the design, manufacture, maintenance and operation of UAS) are the risks presented to people in the regions overflown by the aircraft. Models characterising the nature of these risks are needed to inform the development of airworthiness regulations. The output from these models should include measures of the collective, individual and societal risk. A brief review of these measures is provided. Based on the review, it was determined that the model of the operation of an UAS over inhabited areas must be capable of describing the distribution of possible impact locations, given a failure at a particular point in the flight plan. Existing models either do not take the impact distribution into consideration, or propose complex and computationally expensive methods for its calculation. A computationally efficient approach for estimating the boundary (and in turn area) of the impact distribution for fixed wing unmanned aircraft is proposed. A series of geometric templates that approximate the impact distributions are derived using an empirical analysis of the results obtained from a 6-Degree of Freedom (6DoF) simulation. The impact distributions can be aggregated to provide impact footprint distributions for a range of generic phases of flight and missions. The maximum impact footprint areas obtained from the geometric template are shown to have a relative error of typically less than 1% compared to the areas calculated using the computationally more expensive 6DoF simulation. Computation times for the geometric models are on the order of one second or less, using a standard desktop computer. Future work includes characterising the distribution of impact locations within the footprint boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. The sugarcane transport system is very complex and uses daily schedules, consisting of a set of locomotives runs, to satisfy the requirements of the mill and harvesters. The total cost of sugarcane transport operations is very high; over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. Efficient schedules for sugarcane transport can reduce the cost and limit the negative effects that this system can have on the raw sugar production system. There are several benefits to formulating the train scheduling problem as a blocking parallel-machine job shop scheduling (BPMJSS) problem, namely to prevent two trains passing in one section at the same time; to keep the train activities (operations) in sequence during each run (trip) by applying precedence constraints; to pass the trains on one section in the correct order (priorities of passing trains) by applying disjunctive constraints; and, to ease passing trains by solving rail conflicts by applying blocking constraints and Parallel Machine Scheduling. Therefore, the sugarcane rail operations are formulated as BPMJSS problem. A mixed integer programming and constraint programming approaches are used to describe the BPMJSS problem. The model is solved by the integration of constraint programming, mixed integer programming and search techniques. The optimality performance is tested by Optimization Programming Language (OPL) and CPLEX software on small and large size instances based on specific criteria. A real life problem is used to verify and validate the approach. Constructive heuristics and new metaheuristics including simulated annealing and tabu search are proposed to solve this complex and NP-hard scheduling problem and produce a more efficient scheduling system. Innovative hybrid and hyper metaheuristic techniques are developed and coded using C# language to improve the solutions quality and CPU time. Hybrid techniques depend on integrating heuristic and metaheuristic techniques consecutively, while hyper techniques are the complete integration between different metaheuristic techniques, heuristic techniques, or both.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.